期刊文献+

基于冷损双流体模型及主元分析-支持向量机算法的制冷陈列柜冷风幕优化分析 被引量:4

Optimization of Cold Air Curtain of Refrigeration Display Case Based on RLTF Model and PCA-SVM Algorithm
下载PDF
导出
摘要 利用冷损双流体(RLTF)模型对立式敞开型陈列柜冷风幕及其四周气体流动和传热进行数值模拟,确定其冷损量及影响因素,建立冷损量的目标函数,通过主元分析-支持向量机(PCA-SVM)算法对目标函数寻优,并经过实验加以验证.结果表明,经优化后,陈列柜的冷损量下降了19.6%,单位展示面积的每日耗电量(TEC/TDA)减少了17.1%. To confirm the refrigerating loss and influence parameters of the open vertical display case,the two-fluid model of refrigerating loss (RLTF) was built to study the flow and heat transfer of air curtain and air around. After the object function of refrigerating loss is built, it is solved by principal component analysis (PCA) -support vector machine (SVM) algorithm. By validating the experimental data, the refrigerating loss and TEC/TDA of optimum display case are reduced by 19.6% and 17.1% respectively.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2009年第5期772-776,782,共6页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(50876059)
关键词 冷风幕 冷损双流体模型 主元分析 支持向量机算法 优化分析 cold air curtain two-fluid model of refrigerating loss (RLTF) model principal component analysis (PCA) support vector machine (SVM) algorithm optimization analysis
  • 相关文献

参考文献17

  • 1Giovanni C, Marco M, Gianni C. CFD simulation of refrigerated display cabinets[J]. Int J Refrig, 2001, 24(3) : 250-260.
  • 2Spalding D B. Two-fluid models of turbulence[C]// NASA Langley Workshop on Theoretical Approaches to Turbulence. Hampton, Virginia: NASA Center, 1984:144-152.
  • 3Boser B E, Guyon I, Vapnik V N. A training algorithm for optimal margin classifiers[C]// Proc Fifth Annual Conf. Pittsburgh PA, USA: ACM Press, 1992:144-152.
  • 4Scholkopf B, Burges C J C, Smola A J. Advances in kernel methods-support vector learning [ M]. Cambridge: MIT Press, 1999.
  • 5孙华丽,谢剑英,薛耀锋.基于支持向量机的机械传动方案决策模型[J].上海交通大学学报,2005,39(6):975-978. 被引量:4
  • 6Ge Y T, Tassou S A. Simulation of the performance of single jet air curtains for vertical refrigerated display cabinets[J]. Appl Therm Eng, 2001, 21(2): 201-219.
  • 7Axell M, Fahlen P. Design criteria for energy efficient vertical air curtains in display cabinets[C]//The 21th International Congress of Refrigeration. Washington, USA: International Institute of Refrigeration, 2003:198-206.
  • 8Axell M, Fahlen P. Promotion of energy efficient display cabinets[C]// Joint International Conference of IIR D1, D2/3, Refrigerated Transport, Storage and Retail Display, Cambridge, UK: International Institute of Refrigeration, 1998:244-251.
  • 9Sheng D Y, Jonsson L. Two-fluid simulation on the mixed convection flow pattern in a nonisothermai water model of continuous casting tundish[J]. Metallurgical and Materials Transaction B, 2000, 31(4): 867- 875.
  • 10Yu K Z, Ding G L, Chen T J. Simulation of air curtains for vertical display cases with a two-fluid model [J]. Appl Therm Eng, 2007, 27(14-15) : 2583-2591.

二级参考文献7

  • 1[2]Navaz H K, Faramarzi R, Gharib M, et al. The application of advanced methods in analyzing the performance of the air curtain in a refrigerated display case [J]. ASME J Fluid Engineering, 2002,124(3):756-764.
  • 2[4]Adams P. The intereffect of supermarket refrigeration and air conditioning [J].ASHRAE Trans, 1985,91(1B):423-433.
  • 3Sun H L,Xie J Y,Xue Y F.Decision of the mechanical drive type with fuzzy characters based on the support vector machine [N].Proceedings of the Third International Conference on Machine Learning and Cybernetics [C].New York:Institute of Electrical and Electronics Engineers Incorporated.2004.3170—3173.
  • 4Burges C J C.A tutorial on support vector machines for pattern recognition [J].Data Mining and Knowledge Discovery,1998,2(2):955—974.
  • 5Hsu C W,Lin C J.A comparison of methods for multi—class support vector machines [J].IEEE Trans on Neural Networks,2002,3(13):415—425.
  • 6Vapnik V.Statistical learning theory[M].New York:Wiley,1998.
  • 7Vapnik V.The nature of statistical learning theory[M].New York:Springer Verlag,1995.

共引文献54

同被引文献81

引证文献4

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部