期刊文献+

多氯联苯色谱保留指数QSPR建模的研究 被引量:3

QSPR study of the chromatographic retention time(RRT) of polychlorinated biphenyls(PCBs)
原文传递
导出
摘要 以E-Dragon软件计算的拓扑指数和连接性指数作为变量,随机将209种多氯联苯化合物(PCBs)样本数据划分为训练集、验证集和预测集,采用微粒群-v-支持向量机(PSO-v-SVM)对其色谱保留指数建立QSPR模型,选定的最佳模型入选变量仅5个,对训练集、验证集和预测集计算结果的R^2分别为0.999、0.998和0.999,预测的准确性很高。本文选定的模型较文献[16-19]的计算结果好,预测结果更可靠。 Chose the topology index and connectivity index calculated by E-Dragon software as variables, and divided 209 PCBs compounds (PCBs) into training set, validation set and prediction set randomly. The PSO-v-SVM method was adopted to establish a QSPR model of the retention of PCBs. There were only five variables in the best model, and the ( R2 ) of the computation results for training, validation and prediction set is 0. 999, 0. 998 and 0. 999 respectively, which shows very high accuracy for the forecast set. In this paper, compared with the results in References [ 16- 19], the results show that model of the authors not only has better statistical resuits, but also gets more reliable forecast results.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2009年第5期601-606,共6页 Computers and Applied Chemistry
关键词 多氯联苯 色谱保留指数 E-Dragon软件 微粒群 V-支持向量机 训练集 验证集和预测集 polychlorinated biphenyls (PCBs), chromatographic retention time (RRT), software of E-Dragon, particle swarm optimi- zation (PSO) , v-SVM, training set, validation set, prediction set.
  • 相关文献

参考文献35

  • 1Hansch C. Quantitative structure-activity relationships and the unnamed science. Acc Chem Res, 1993, 26(4) :147 -153.
  • 2Alexander G and Alexander T. Beware of q2!. Journal of Molecular Graphics and Modelling, 2002, 20:269 - 276.
  • 3Shao J. Linear model selection by cross-validation. J Am Stat Assoc, 1993, 88(422) :486 -494.
  • 4Tropsha A, Gramatica P and Gombar VK. The importance of being earnest:validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci, 2003, 22 (1) :69 -76.
  • 5Kubinyi H. From narcosis to hyperspace: the history of QSAR. Quant Struct-Act Relat, 2002, 21 (4) :348 - 356.
  • 6Baumann K. Cross-validation as the objective function for variableselection techniques. TrAC Trends in Analytical Chemistry, 2003, 22(6) :395 -406.
  • 7Baumann K and Stiefl N. Validation tools for variable subset regression. J Comput-Aided Mol Design, 2004,18:549 -562.
  • 8Golbraikh A and Tropsha A. Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J Comput-Aided Mol Design, 2002, 16:357 -369.
  • 9Paola G. Principles of QSAR models validation : internal and external. QSAR Comb Sci, 2007, 26(5) :694 -701.
  • 10Sjostrom M and Eriksson L. In:Chemometric Methods in Molecular Design, H van de Waterbeend (Ed), VCH, NY, 1995, Vol. 2, p. 63.

同被引文献42

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部