期刊文献+

First-Principle Calculations of Hardness and Melting Point of Mo_2C 被引量:1

First-Principle Calculations of Hardness and Melting Point of Mo_2C
下载PDF
导出
摘要 This paper has constructed two kinds of atomic and electronic models for hexagonal β-Mo2C and orthorhombic α-Mo2C. The optimized lattice parameters, elastic constant matrixes and overlap population for Mo2C crystal cells have been obtained to realize the characterization of the hardness and melting point of the two structures by the first-principles plane wave pseudo potential method based on the density functional theory. The results reveal that the calculated lattice parameters of the Mo2C crystal cells agree with the experimental and other calculated data. The calculated melting point/hardness are 2715 K/11.38 GPa for β-Mo2C and 2699 K/10.57~12.67 GPa for α-Mo2C, respectively. The calculated results from the density of states (DOS) demonstrate that the hybridization effect between Mo-3d and C-2p states in α-Mo2C crystal cell is much stronger than that in β-Mo2C one. This paper has constructed two kinds of atomic and electronic models for hexagonal β-Mo2C and orthorhombic α-Mo2C. The optimized lattice parameters, elastic constant matrixes and overlap population for Mo2C crystal cells have been obtained to realize the characterization of the hardness and melting point of the two structures by the first-principles plane wave pseudo potential method based on the density functional theory. The results reveal that the calculated lattice parameters of the Mo2C crystal cells agree with the experimental and other calculated data. The calculated melting point/hardness are 2715 K/11.38 GPa for β-Mo2C and 2699 K/10.57-12.67 GPa for α-Mo2C, respectively. The calculated results from the density of states (DOS) demonstrate that the hybridization effect between Mo-3d and C-2p states in α-Mo2C crystal cell is much stronger than that in β-Mo2C one.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第3期419-422,共4页 材料科学技术(英文版)
关键词 第一原理计算 Mo2C 熔点 硬度 晶胞参数 密度泛函理论 第一性原理 电子模型 First-principle Mo2C Hardness Melting point Density of states
  • 相关文献

参考文献1

  • 1Jianbing Cheng, Yufang Wu, Qixun Yu 1) Department of Mechanical Engineering, Beijing Technology and Business University, Beijing 100037, China 2) College of Mechanical Engineering and Automation, Beijing Institute of Technology Beijing 100081, China.Cutting Performance and Mechanism of RE Carbide Tools[J].Rare Metals,2001,20(3):197-201. 被引量:2

共引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部