期刊文献+

地震微观前兆预报网络系统设计研究(1)——地震模型 被引量:2

Study of design of the network system for earthquake micro precursor forecast
下载PDF
导出
摘要 地震预报是一个极大挑战性的世界难题。为了准确地预报地震必须跟踪地震的整个孕育过程。例如利用基岩传感器网络收集地震微观前兆的各种信息,包括基岩应力、应变和破裂强度的变化、基岩振动状态的变化、引力波和冲击波强度的变化、地热温度分布的变化、电磁场的变化等。经过传感器数据融合和信号处理提取有用信息,然后由数据处理中心做出决策判断。提出了地震微观前兆预报网络系统设计的一整套详细方案,包括地震模型、基岩传感器网络和数据融合以及信号处理技术和网络系统设计。 Earthquake prediction is a very difficult problem all over the world. It is necessary to track the whole forming process for correct earthquake forecast. For example, bedrock sensor network is used to collect the information of earthquake precursors, including changes of bedrock stress, strain and bursting strength, bedrock vibration status, gravitational wave strength, shock wave strength, terrestrial heat temperature distribution and electromagnetic field strength, etc. After data fusion and signal processing, the useful information is pick-up and is sent to data process center for giving correct judgment. A study of design of the network system for earthquake micro precursor forecast is presented in detail in this serial papers, which include model of earthquake, signal acquisition methods, bedrock sensor network and data fusion, signal processing, design of network system. The emphases is put on how to build the model of earthquake in this paper. The correlation theories and statistical method are introduced too.
出处 《传感器世界》 2009年第5期6-16,共11页 Sensor World
关键词 地震微观前兆 自修正地震模型 MARKOV链 可靠性分析 earthquake micro precursor self-correcting model of earthquake Markov chains reliability analysis
  • 相关文献

参考文献22

  • 1Vere-Jones D, Earthquake prediction - A statistician's views [J] J.Phys. Earth, 1978; 26:129-146.
  • 2Vere-Jones D and Ozaki T, some examples of statistical inference applied to earthquake data[J]. Ann. Inst. Stat. Math, 1982; 34: 189-207.
  • 3Rubin I, Regular point processes and their detection [J]. IEEE Trans. Inform. Theory, 1972; IT18:547-557.
  • 4Isham V and Westcott M, A self-correcting point process[J]. Stoch, Proc, Appl, 1979; 8: 335-347.
  • 5Basawa IV and Scott D J, Asymptotic Inference for Non-ergodic Models[C]. 1983, Berlin.
  • 6Kutoyants YnA, Local asymptotic normality for processes of Poisson type. Izvest. Akad Arm. Nauk. Ser. Matermatika, 1979; 14(1): 3-20.
  • 7Billingsley P, Convergence of probability measures [M]. New York: Wiley.
  • 8Daley DJ and Vere-Jones D, A summary of the theory of point process in stochastic point processes [M]. PAW Lewis: Wiley, 1979.
  • 9Lipster RS and Shiryaes AN, Statics of Random processes [M]. Berlin: Springer, 1978
  • 10Cinlar E, Introduction to stochastic processes [M]. Englewood Cliffs: Prentice-Hall, 1975.

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部