期刊文献+

基于粗糙集和K-均值聚类的概念设计实例检索方法研究 被引量:3

Methodology study on instance retrieval of conceptual design based on roughness set and K-means clustering
下载PDF
导出
摘要 针对产品概念设计非常复杂、涉及内容多等特点,提出基于粗糙集的实例推理技术,并将其应用于实例检索。首先在分析了概念设计特征基础上,建立了基于粗糙集的概念设计实例知识表达系统模型,然后通过基于分层聚类的K-means聚类法离散化决策表中的连续属性,利用粗糙集对离散后的决策表进行实例特征属性约简,抽取重要的特征属性作为检索依据,通过权值计算方法得到各特征属性的权值,检索出最为接近的概念设计实例作为设计参考实例。最后以冲压模具实例检索为应用实例,说明了这种实例检索方法的可行性、有效性。 Directed against the characteristics of the conceptual design of product was very complicated and involving many contents etc. , the instance reasoning technique based on roughness set was put forward. Firstly, on the.basis of analyzing the characteristics of conceptual design, the expression system model of instance knowledge of conceptual design was established based on the roughness set. And then by means of the continuous attribute in the diseretized decision table of the k-means clustering method based on delaminated clustering, and utilizing the roughness set to carrying out reduction on the instance characteristic attribute of the straggled decision table. Taking the being colleted important characteristic attributes as the basis of search, and through the calculation method of weighted value, the weighted value of each characteristic attributes were obtained, and take the most adjacent instance of concep- tual design being searched as the referential instance of design. Finally the instance retrieval of a stamping die was being taken as an application instance, the feasibihty and effectiveness of this instance retrieval method were explained.
出处 《机械设计》 CSCD 北大核心 2009年第5期67-70,共4页 Journal of Machine Design
基金 辽宁省创新团队支持计划资助项目(2007T013 2008T018)
关键词 粗糙集 概念设计 实例检索 权值计算 K-均值聚类 roughness set conceptual design instance retrieval calculation of weighted value K-means clustering
  • 相关文献

参考文献16

  • 1高常青,黄克正,赵方,艾长胜,曹树坤.基于实例推理的原理及结构快速创新设计的研究与实现[J].中国机械工程,2007,18(24):2907-2913. 被引量:15
  • 2张文修,仇国芳.基于粗糙集的不确定决策[M].北京:清华大学出版社,2006.32-35.
  • 3Pawlak Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982,11 (5) :341 - 356.
  • 4Jorg Walter Schasf. Detecting gestalts in CAD-plans to be used as indices for case-retrieval in architecture[ J]. Advances in Artificial Intelligence, 2006( 1 ) :154 - 165.
  • 5Chiu Chuang-Cheng, Tsai Chieh-Yuan. A weighted feature C-Means clustering algorithm for case indexing and retrieval in Cased-Based reasoning[J]. New Trends in Applied Artificial Intelligence, 2007 (7) :541 -551.
  • 6王珂,廖文和,郭宇,刘金山.基于位索引的多层次实例检索模型研究[J].中国机械工程,2007,18(16):1953-1956. 被引量:6
  • 7宋英姿,李庆武,王晓玲,倪雪.球坐标系下小波收缩去噪方法的改进[J].河海大学常州分校学报,2007,21(1):1-3. 被引量:14
  • 8Alisantoso D, Khoo L P, Ivan Lee B H, et al. A rough set approach to design concept analysis in a design chain [ J ]. The International Journal of Advanced Manufacturing Technology, 2004 (12) :427 - 435.
  • 9Sutanu Chakraborti, Robert Lothian, Nirmalie Wiratunga,et al. Fast case retrieval nets for textual data[ J]. Advances in Case-Based Reasoning, 2006(8) :400-414.
  • 10Tony Mileman, Brian Knight, Millos Petridis, et al. Case-based retrieval of 3 -dimensional shapes for the design of metal castings[ J]. Journal of Intelligent Manufacturing, 2004 ( 11 ) :39 - 45.

二级参考文献35

共引文献113

同被引文献25

  • 1贡智兵,李东波,潘洋宇.粗集理论在快速设计中的应用研究[J].计算机集成制造系统,2006,12(8):1198-1202. 被引量:5
  • 2傅晓林,王兴家,蔡辰光.粗糙集与神经网络在发动机故障诊断中的融合应用[J].重庆交通学院学报,2006,25(6):130-134. 被引量:4
  • 3丁俊健,谈士力,宋晓峰,孙亚杰.基于BP神经网络的ETO产品配置设计方法[J].工程设计学报,2007,14(3):199-203. 被引量:4
  • 4YIN Xianggang, YU Weidong. The virtual manufacturing model of the worsted yarn based on artificial neural networks and grey theory [J]. Appl Math Comput, 2007, 185(1): 322-332.
  • 5LEE G H. Rule-based and ease-based reasoning approach for internal audit of bank [J]. Knowledge Based Syst, 2008, 21(2); 140-147.
  • 6TUNG Y H, TSENG S S, WENG J F, et al. A rule-based CBR approach for expert finding and problem diagno- sis [J]. Expert Syst Appl, 2010, 37(3): 2427-2438.
  • 7PRENTZAS J, HATZILYGEROUDIS I. Categorizing approaches combining rule-based and case-based reason- ing [J]. Expert Syst, 2007, 24(2): 97-122.
  • 8PAWLAK Z. Rough set [-J]. Int J Comput Inf Sci, 1982, 11(5) : 341-356.
  • 9LIU Gui, YU Weidong. Smart case-base indexing in worsted roving process: combination of rough set and case- based reasoning [J]. Appl Math Comput, 2009, 214(1): 280-286.
  • 10PARK C S, HAN I. A case-based reasoning with the feature weights derived by analytic hierarchy process for bankruptcy prediction [J]- Expert Syst Appl, 2002, 23(3): 255-264.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部