期刊文献+

主从关系数据库中关联规则挖掘算法研究 被引量:5

Research on the algorithms for mining association rules in the master-slave relationship database
下载PDF
导出
摘要 数据挖掘是计算机科学研究的重要领域之一。文章从主从关系数据集的角度开展关联规则挖掘研究,首先构建了主从关系数据库模型,在此基础上提出一种基于元组ID逆传输的关联规则挖掘算法(TIDRP),避免了挖掘过程中数据的集成过程,减少了资源的消耗,并使挖掘出的规则更符合实际情况。 Data mining is one of the important areas of computer science, and how to mine ettecuve mformation directly from a relational database which contains multi-relational data has been an important subject. In this paper, the mining of association rules is studied from the view of master-slave relationship data set. First, the model of master-slave relationship database is constructed. Then an algorithm for mining multi-relational association rules based on tuple ID retrorse propagation, which is called TIDRP, is proposed. The process of data integration is avoided, the consumption of resources is reduced, and the mining rules are more accorded with the practical situation.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期663-666,共4页 Journal of Hefei University of Technology:Natural Science
关键词 数据挖掘 主从关系 关联规则 元组ID传输 data mining master-slave relation association rule tuple ID propagation
  • 相关文献

参考文献14

  • 1何军,刘红岩,杜小勇.挖掘多关系关联规则[J].软件学报,2007,18(11):2752-2765. 被引量:38
  • 2Dehaspe L,Raedt L D.Mining association rules in multiple relations[C]//Dzeroski S,Lavrac N.Proc of the 7th Int'l Workshop on Inductive Logic Programming,LNAI 1297.Berlin:Springer-Verlag,1997:125-132.
  • 3Dehaspe L,Toivonen H.Discovery of frequent datalog patterns[J].Data Mining and Knowledge Discovery,1999,3(1):7-36.
  • 4Nijssen S,Kok J.Faster association rules for multiple relations[C]//Nebel B.Proc of the 17th Int'l Joint Conf on Artificial Intelligence (IJCAI 2001),2001:891-896.
  • 5Lavrac N,Dzeroski S.Inductive logic programming:techniques and and applications[M].Prentice Hall,1994:1.
  • 6张伟,杨炳儒,宋威.多关系数据挖掘研究综述[J].计算机工程与应用,2006,42(2):1-6. 被引量:4
  • 7Yin Xiaoxin,Han Jiawei,Yang Jiong,et al.Efficient classification across multiple database relations:a CrossMine approach[J].IEEE Transactions on Knowledge and Data Engineering,2006,18(6):770-783.
  • 8Zhang Shichao,Wu Xindong,Zhang Chengqi.Multi-database ming[J].IEEE Computational Intelligence Bulletin,2003,2(1):5-13.
  • 9Yin Xiaoxin,Han Jiawei,Yang Jiong,et al.CrossMine:efficient classification across multiple database relations[C]//ICDE,2004:399-410.
  • 10Liu Huan,Lu Hongjun,Yao Jun.Toward multidatabase mining:identifying relevant databases[J].IEEE Transactions on Knowledge and Data Engineering,2001,13(4):541-553.

二级参考文献85

  • 1徐利军,谢康林.A novel algorithm for frequent itemset mining in data warehouses[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2006,7(2):216-224. 被引量:2
  • 2K Kersting,L De Raedt.Bayesian Logic Programs[C].In:Proceedings of the Work-in-Progress Track at the 10th International Conference on Inductive Logic Programming,2000.
  • 3B Taskar,E Segal,D Koller.Probabilistic clustering in relational data[C].In:Seventeenth International Joint Conference on Artificial In- telligence(IJCAI-01 ) ,Morgan Kaufmann,Seattle,Washington,USA ,2001.
  • 4L Getoor,E Segal,B Taskar et al.Probabilistic Models of Text and Link Structure for Hypertext Classification[C].In:Workshop Notes of IJCAI-01 Workshop on Text Learning:Beyond Supervision,Washington, USA, 2001.
  • 5E Segal,B Taskar,A Gasch et al.Rich Probabilistic Models for Gene Expression[J].Bioinformatics,2001 ; 17:S243-S252.
  • 6E Segal,Y Barash,I Simon et al.From Promoter Sequence to Expression :A Probabilistic Framework[C].In : Proceedings of the Sixth International Conference on Research in Computational Molecular Biology (RECOMB-02), Washington : DC, USA, 2002 : 263-272.
  • 7E Segal,A Battle,D Koller.Decomposing Gene Expression into Cellular Processes[C].In:Proceedings of the Pacific Symposium on Biocomputing,World Scientific, Kauai, Hawaii, USA, 2003 : 89- 100.
  • 8L Getoor,D Koller,B Taskar et al.Learning probabilistic relational models with structural uneertainty[C].In Proceedings of the AAAI-2000 Workshop on Learning Statistical Models from Relational Data,2000: 13-20.
  • 9L Dehaspe,H Toivonen.Discovery of Relational Association Rules[C]. In :[1] .2001 : 189-212.
  • 10S Nijssen,J Kok.Faster association rules for multiple relations[C]. In:IJCAI'01: Seventeenth International Joint Conference on Artificial Intelligence,vol 2,2001:891-896.

共引文献43

同被引文献58

  • 1马辉,张树有,谭建荣,王新.面向大批量定制的产品族可拓物元模型[J].计算机辅助设计与图形学学报,2005,17(10):2299-2304. 被引量:11
  • 2周洁红,钟勇杰.美国蔬菜质量安全管理体系及对中国的政策启示[J].世界农业,2006(1):39-42. 被引量:18
  • 3王琦,孙咏华,田志宏.农产品对外贸易的产品分类问题研究[J].世界农业,2007(7):16-19. 被引量:28
  • 4Pan S J,Yang Qiang.A survey on transfer learning[J].IEEE Transactions on Knowledge and Data Engineering,2009:513-518.
  • 5Pan S J,Kwok J T,Yang Qiang.Transfer learning via dimensionality reduction[C] //Proceedings of the 23rd AAAI Conference on Artificial Intelligence,Chicago,Illinois,USA,July,2008:677-682.
  • 6Blitzer J,Dredze M,Pereira F.Biographies,bollywood,boom-boxes and blenders:domain adaptation for sentiment classification[C] //Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics,Prague,Czech Republic,2007:432-439.
  • 7Caruana R.Multitask learning[J].Machine Learning,1997,28(1):41-75.
  • 8Raina R,Battle A,Lee H,et al.Self-taught learning:Transfer learning from unlabeled data[C] //Proceedings of the 24th International Conference on Machine Learning,Corvalis,Oregon,USA,June,2007:759-766.
  • 9Daumé III H,Marcu D.Domain adaptation for statistical classifiers[J].Journal of Artificial Intelligence Research,2006,26:101-126.
  • 10Zadrozny B.Learning and evaluating classifiers under sample selection bias[C] //Proceedings of the 21st International Conference on Machine Learning,Banff,Alberta,Canada,July,2004:114-121.

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部