期刊文献+

基于模糊神经网络的数据通信子系统全局故障诊断 被引量:1

Global Fault Diagnosis to Data Communication Subsystem based on Fuzzy Neural Network
下载PDF
导出
摘要 基于模糊神经网络理论,提出一种基于模型构建的数据通信子系统(DCS)全局故障诊断方法。全局故障诊断模型的输入空间由故障征兆集组成,诊断过程由全局故障诊断规则实现,输出空间由故障类别集组成。基于对DCS系统结构的分析,选取了一些关键设备信息作为故障征兆信息。将故障征兆信息中的物理向量分析转化为算术数值判断,创建决策矩阵,构建全局故障诊断规则,实现了故障类别综合判定,从而完成全局故障诊断模型构建。以工程实例中的DCS典型故障类别为验证对象,对全局故障诊断模型进行了试验验证。该方法丰富了DCS故障诊断方法,总体精度可达到91.29%。 Based on fuzzy neural network, a global fault diagnosis method to Data Communication Subsystem (DCS) based on model building is introduced. Input space of global fault diagnosis model is mainly comprised of fault symptom set, diagnostic procedure is realized by global fault diagnosis rule, and output space of global fault diagnosis model was mainly comprised of fault type set. Besed on the analysis of DCS framework, some key equipment information is selected as fault symptom information. Through transforming physical vector analysis of fault symptom information to arithmetic numerical value judgement, creating decision matrix and constructing global fault diagnosis rule, global fault diagnosis model buildup is completed and synthetic judgement of fault type is realized. Regarding the case studies of typical fault types of DCS as validation objectives, experiment validation is carried out by global fault diagnosis model. The experiment result indicated that global fault diagnosis model has better to analyze cause and effect between fault symtom and fault types of DCS, enriched fault diagnosis methods of DCS, and collectivity precision is 91.29%.
作者 高军武
出处 《现代城市轨道交通》 2009年第3期49-52,共4页 Modern Urban Transit
  • 相关文献

参考文献7

二级参考文献31

  • 1李三群,曹立军.基于动态模糊综合评判的反后坐装置故障预测模型[J].军械工程学院学报,2003,15(1):34-37. 被引量:2
  • 2向国全,董道珍.BP模型中的激励函数和改进的网络训练法[J].计算机研究与发展,1997,34(2):113-117. 被引量:28
  • 3潘丹,华南理工大学学报,1998年,4期,49页
  • 4薛家强,华南理工大学学报,1998年,4期,21页
  • 5向国权,计算机研究与发展,1997年,2期,113页
  • 6王伟,人工神经网络原理,1995年,115页
  • 7Amain Z.Günter H.A Train Control System Case Study in Model-Based Real Time System Design[C]∥In International Parallel and Distributed Processing Symposium,IEEE,2003:118-126.
  • 8Holger H,David N J,Yaroslav S U.A Comparative Reliability Analvsis of ETCS Train Radio Communications[R].AVACS Technical Report,2005.
  • 9Department I S.802.11:IEEE Standard for Wireless LAN Medium Access Control(MAC)and Physical Layer (PHY)Specifications[S].1999 Edition,IEEE Standards Association.
  • 10Chen D Y,Sachin G,Channdra K,et al.Dependability Enhancement for IEEE 802.11 Wireless LAN with Redundancy Techniques[C]∥In Proceeding of the 2003 International Conference on Dependability Systems and Networks(DSN'03),IEEE,2003:120-128.

共引文献34

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部