期刊文献+

求解多目标最小生成树的一种新的遗传算法 被引量:1

New NSGA-Ⅱ on Multi-Objective Minimum Spanning Tree problem
下载PDF
导出
摘要 在改进的非支配排序遗传算法(NSGA-Ⅱ)的基础上,提出了一种新的基于生成树边集合编码的繁殖算子求解多目标最小生成树问题的遗传算法。通过快速非支配排序法,降低了算法的计算复杂度,引入保存精英策略,扩大采样空间。实验结果表明:对于多目标最小生成树问题,边集合编码具有较好的遗传性和局部性,而且基于此繁殖算子的遗传算法在求解效率和解的质量方面都优于基于PrimRST的遗传算法。 A novel multi-objective evolutionary algorithm on multi-objective minimum spanning tree problem is proposed which is based on a fast elitist Non-dominated Sorting Genetic Algorithm for multi-objective optimization(NSGA-Ⅱ).It adopts the edgesets as the tree encoding and a new crossover operator and a fast elitist non-dominated sorting algorithm to make the GA search give out all Pareto optimal solutions distributed all along the Pareto frontier.The experimental results show that this algorithm has faster convergent speed and better diversity of solutions than the algorithm based on PrimRST.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第16期48-49,65,共3页 Computer Engineering and Applications
基金 国家自然科学基金(No.60573040)~~
关键词 多目标最小生成树 改进的非支配排序遗传算法(NSGA—Ⅱ) 最小生成树 PARETO最优解 Multi-Objective Minimum Spanning Tree (MO-MST) Non-dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ) Minimum Spanning Tree(MST) Pareto optimal solution
  • 相关文献

参考文献4

  • 1Zhou G,Gen M.The genetic algorithms approach to the multicriteria minimum spanning tree pmblem[J].European Journal of Operational Research, 1999,114: 141-152.
  • 2Raidl G R,Julstrom B A.Edge-Sets:An effective evolutionary coding of spanning trees[J].IEEE Transactions on Evolutionary Computation, 2003,7 ( 3 ) : 225-239.
  • 3Kasyanov V N,Evstigneev V A.图论编程-分类树算法[M].北京:科学出版社,2006:123-125.
  • 4Deb K,Agrawal S,Pratap A,et al.A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,6(3): 182-197.

同被引文献16

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部