期刊文献+

多特征融合的蛋白质相互作用位点预测

Prediction of protein interaction sites using multi-feature amalgamation
下载PDF
导出
摘要 蛋白质相互作用位点预测为蛋白质功能和药物设计的理解提供重要线索。而蛋白质的各种特征为蛋白质相互作用位点预测提供了大量有用信息,特别是进化信息、残基序列邻近和空间邻近性。不同的蛋白质特征对蛋白质间的相互作用的贡献也不一样。通过提取蛋白质序列谱、保守性和残基熵,提出了特征融合技术对蛋白质相互作用位点进行研究,采用SVM构建三种预测器,分别对各种不同的特征加以验证,实验结果表明了基于特征融合方法的有效性和正确性。 Prediction of protein-protein interaction sites provides the key dues to understand the function of a protein and drug design.However,many different features of protein provide much information for the prediction of protein-protein interaction sites, especially protein-protein evolution information,residues sequence neighbor list and residues space neighbor list.Different features are not the same for prediction of protein-protein interaction sites.Choosing protein profile of sequence alignment,residues conserved score and residue entropy,suggesting the technology of protein features amalgamation to predict protein-protein interaction sites.This paper adopts SVM to construct three predictors which validate them with different features as input vector, the experiments show the validation and correctness of the method based on feature amalgamation.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第16期50-52,59,共4页 Computer Engineering and Applications
基金 国家教育部博士点基金(No.200403057002) 安徽大学研究生创新项目(No.20073056) 安徽省高校青年基金(No.2007jql140) 安徽省高校自然科学研究一般项目(No.KJ2007B066)~~
关键词 蛋白质相互作用位点 蛋白质特征 序列谱 残基保守性 残基熵 支持向量机 protein interaction sites protein feature sequence profile residue conserved score residue entropy Support Veetor Machine(SVM)
  • 相关文献

参考文献17

  • 1Alberts B.Molecular biology of the cell[M].4th ed.New York:Garland Science,2002.
  • 2Gaasterland T,Ragan M A.Microbial genescapes:Phyletic and functional patterns of ORF distribution among prokaryotes [J].Microb Comp Genomics, 1998,3(4) : 199-217.
  • 3Enright A J,Iliopoulos I,Kyrpides N C,et al.Protein interaction maps for complete genomes based on gene fusion events[J].Nature, 1999,402(6757 ) : 86-90.
  • 4Ortiz A R,Kolinski A,Rotkiewicz P,et al.Ab initio folding of proteins using restraints derived from evolutionary information[J].Proteins, 1999, Suppl 3 : 77-85.
  • 5Gomez S M,Lo S H,Rzhetsky A.Probabilistic prediction of unknown metabolic and signal- transduction networks [J].Genetics, 2001,159(3) : 1291-8.
  • 6Gomez S M,Noble W S,Rzhetsky A.Learning to predict protein-protein interactions from protein sequences[J].Bioinformatics,2003, 19(15) : 1875-81.
  • 7Koike A,Takagi T.Predietion of protein-protein interaction sites using support vector machines[J].Protein Engineering,Design & Selection, 2004,17 (2) : 165-173.
  • 8Bradford J R,Westhead D R.Improved prediction of protein-protein binding sites using a support vector machines approach[J]. Bioformatics, 2005,21 ( 8 ) : 1487-1494.
  • 9Gomez S M,Noble W S,Rzhetsky A.Learning to predict protein- protein interactions from protein sequences[J].Bioinformatics,2003, 19(15) : 1875-1.
  • 10Fariselli P, Pazos F,Valencia A, et al.Prediction of protein-protein interaction sites in heterocomplexes with neural networks[J].Eur J Biochem, 2002,269 : 1356-1361.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部