摘要
提出了一种新颖的基于Q-学习、蚁群算法和轮盘赌算法的多Agent强化学习。在强化学习算法中,当Agent数量增加到足够大时,就会出现动作空间灾难性问题,即:其学习速度骤然下降。另外,Agent是利用Q值来选择下一步动作的,因此,在学习早期,动作的选择严重束缚于高Q值。把蚁群算法、轮盘赌算法和强化学习三者结合起来,期望解决上述提出的问题。最后,对新算法的理论分析和实验结果都证明了改进的Q学习是可行的,并且可以有效地提高学习效率。
Authors present a novel Multiagent Reinforcement Learning Algorithm based on Q-Learning,ant colony algorithm and roulette algorithm.In reinforcement learning algorithm,when the number of agents is large enough,all of the action selection methods will be failed:the speed of learning is decreased sharply.Besides,as the Agent makes use of the Q value to choose the next action,the next action is restrainted seriously by the high Q value,in the prophase.So,authors combine the ant conlony algorithm,roulette algorithm with Q-learning,hope that the problems will be resolved with the algorithm proposed.At last,the theory analysis and experiment result both demonstrate that the improved Q-learning is feasible and increases the learning efficiency.
出处
《计算机工程与应用》
CSCD
北大核心
2009年第16期60-62,共3页
Computer Engineering and Applications
基金
吉林省科技发展计划项目(No.20070530)~~
关键词
多Agent强化学习算法
蚁群算法
轮盘赌算法
muhiagent reinforcement learning algorithm
ant colony algorithm
roulette algorithm