期刊文献+

改进的超球支持向量机算法 被引量:6

Improved hyper-sphere Support Vector Machine
下载PDF
导出
摘要 超球支持向量机算法用于解决多类别数据的分类问题。对超球重叠区域的数据正确分类对球结构支持向量机的分类性能至关重要。在分析这些样本点特点的基础上,提出了一种新的分类规则,使超球支持向量机算法的泛化性能高于现有的算法。实验结果表明该算法有效可行,提高了最小包围球分类器的分类精度。 Hyper-sphere support vector machines are proposed for solving muhi-class classification problem.How to correctly classify the intersections of hyper-spberes is important for sphere structure support vector machines.Based on the analysis of such data samples,this paper presents a new simple classification rule which leads to a better generalization accuracy than the existing sub-hyper-sphere SVMs.Experimental results show the method is feasible and improves the performance of the resulting minimum bounding sphere-based classifier.
作者 刘爽 陈鹏
出处 《计算机工程与应用》 CSCD 北大核心 2009年第16期149-151,共3页 Computer Engineering and Applications
关键词 超球支持向量机 多分类问题 重叠区域数据 子超球 hyper-sphere support vector machine multi-class classification intersection data sub-hyper-sphere
  • 相关文献

参考文献7

  • 1Weston J,Watkins C.Support vector machines for multi-class pattern recognition[C]//Proceedings of the European Symposium on Artificial Neural Networks, Bruges, 1999 : 219-224.
  • 2Hsu Chih-Wei,Lin Chih-Jen.A comparison of methods for multiclass support vector machines[J].IEEE Transactions on Neural Networks, 2002,13 (2) : 415-425.
  • 3Kreβel U.Pairwise classification and support vector machines,advances in kernel methods[M].Cambridge:MIT Press, 1999:255-268.
  • 4Platt J C,Cristianini N,Shawe-Taylor J.Large margin DAGs for muhiclass classification[C]//Solla S,Leen T K,Muller K R.Advances in Neural Information Processing Systems 12. Cambridge,MA:MIT Press, 2000: 547-553.
  • 5Zhu M L,Chen S F,Liu X D.Sphere-structured support vector machines for multi-class pattern recognition[C]//Lecture Notes in Computing Science, 2003,2369 : 589-593.
  • 6吴强,贾传荧,张爱锋,刘爽.球结构支持向量机的改进算法及仿真研究[J].系统仿真学报,2008,20(2):345-348. 被引量:18
  • 7Fisher R A.Iris plants database [DB/OL].(1988-07)[2006-11].http: //www.ics. uci.edu/-mlearn.

二级参考文献10

共引文献17

同被引文献57

  • 1李盼池,许少华.支持向量机在模式识别中的核函数特性分析[J].计算机工程与设计,2005,26(2):302-304. 被引量:98
  • 2余正涛,樊孝忠,郭剑毅,耿增民.基于潜在语义分析的汉语问答系统答案提取[J].计算机学报,2006,29(10):1889-1893. 被引量:44
  • 3李良俊,张斌,杨明.基于LSA降维的KNN文本分类算法[J].东北师大学报(自然科学版),2007,39(2):33-36. 被引量:7
  • 4Li C G. An efficient document categorization model based on LSA and BPNN//Proceedings of the Sixth International Conference on Advanced Language Processing and Web Information Technology. Washington, DC: IEEE Computer Society,2007.
  • 5Tsang W, Kocsor A, Kwok J T. Simpler core vector machines with enclosing balls//Proceedings of the 24^th international conference on Machine Learning, New York : ACM,2007 : 12 - 18.
  • 6Liu S, Liu Y K, Wang B, et al. An improved hyper - sphere support vector machine//Proceedings of the Third International Conference on Natural Computation. Washington, DC, USA: IEEE Computer Society, 2007.
  • 7曹杰,刘志镜.基于支持向量机的增量学习算法[J].计算机应用研究,2007,24(8):48-49. 被引量:9
  • 8Wael Emara, Mehmed Kantardzic. Local properties of RBF SVM during training for incremental learning [C]. Proceedings of the International Joint Conference on Neural Networks, Atlanta, Georgia, USA, 2009: 779-786.
  • 9Chih-Jen LIN. LIBSVM data: Multi-label classification [DB/OL]. http://www. csie. ntu. edu. tw/- cilin/libsvmtools/datasets/binary. html, 2011.
  • 10中国科学院计算技术研究所.ICTCLAS2011[EB/OL].[2010-12-21].http://ictclas.org/ictclas_download.aspx.

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部