期刊文献+

数据挖掘在证券业务分析系统中的应用 被引量:1

Application of Data Mining in Analysis System of Securities Industry
下载PDF
导出
摘要 对数据挖掘在证券业务分析系统中的应用相关理论进行了探讨,重点阐述了通过数据挖掘技术挖掘股票之间的关联规则,使投资者了解各种股票的走势及股票之间的关系,从而作出正确的投资决策。 This paper discussed relative knowledge of data mining application in analysis system of securities industry. It mainly introduced the association rules among stocks using DW technology. These imparted the stock trend and relations among stocks to investors, in order to make a right decision in investment.
作者 肖菲
出处 《电脑开发与应用》 2009年第6期56-58,60,共4页 Computer Development & Applications
关键词 数据仓库 数据挖掘 关联规则 证券业务 data warehouse, data mining, association rules, securities industry
  • 相关文献

参考文献6

二级参考文献25

  • 1陈安龙,唐常杰,陶宏才,元昌安,谢方军.基于极大团和FP-Tree的挖掘关联规则的改进算法[J].软件学报,2004,15(8):1198-1207. 被引量:30
  • 2何小东,刘卫国.数据挖掘中关联规则挖掘算法比较研究[J].计算机工程与设计,2005,26(5):1265-1268. 被引量:36
  • 3[1]Agrawal R., Imielinski T., Swami A.. Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, D. C. , USA, 1993, 207~216
  • 4[2]Lin D-I. , Kedem Z. M.. Pincer-search: A new algorithm for discovering the maximum frequent set. In: Proceedings of the 6th International Conference on Extending Database Technology, Valencia, Spain, 1998, 105~119
  • 5[3]Bayardo R. J.. Efficiently mining long patterns from databases.In: Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, Seattle, Washington, USA,1998, 85~93
  • 6[4]Aggarwal C. , Agarwal R. , Prasad V. V. V.. Depth first generation of long patterns. In: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Boston, MA, USA, 2000, 108~118
  • 7[5]Burdick D. , Calimlim M. , Gehrke J.. MAFIA: A maximal frequent itemset algorithm for transactional databases. In: Proceedings of the 17th International Conference on Data Engineering, Heidelberg, Germany, 2001, 443~452
  • 8[6]Agrawal R. , Srikant R.. Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases, Santiago, Chile, 1994, 487~499
  • 9[7]Liu Jun-Qiang, Pan Yun-He, Wang Ke, Han Jia-Wei. Mining frequent item sets by opportunistic projection. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Alberta, Canada, 2002, 229~238
  • 10[8]Wang Ke, Liu Tang, Han Jia-Wei, Liu Jun-Qiang. Top down FP-growth for association rule mining. In: Proceedings of the 6th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Taipei, Taiwan, China, 2002, 334~340

共引文献30

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部