期刊文献+

基于时频滤波重构自适应采样方法研究

Research of adaptive sampling based on reconstruction of time-frequency filtering
下载PDF
导出
摘要 本文基于对自适应采样时频分布的推导,提出了一种时频滤波重构自适应采样的方法;从理论上证明了时频滤波重构方法的可行性,也通过实例验证了该重构方法可实现自适应采样的重构,并且,定性分析了时间窗对重构误差的影响;最后,以信噪比作为指标,重点分析了窗函数宽度、种类的影响,评估了影响时频滤波重构自适应采样精度的各因素。 According to the time-frequency distribution, the paper proposes a reconstruction algorithm based on time-frequency filtering for adaptive sampling. The feasibility of algorithm is proved from theory and example. Through the qualitative analysis, the effect of the time-window upon the reconstruction error is derived. Finally, using SNR as the index, the factors impacting the reconstruction accuracy are evaluated, in which the width and the sort of time-window are emphasis analyzed.
出处 《电子测量与仪器学报》 CSCD 2009年第5期11-16,共6页 Journal of Electronic Measurement and Instrumentation
关键词 自适应采样重构 短时傅里叶变换 时频分布 时频滤波 adaptive sampling reconstruction Short Time Fourier Transform time-frequency distribution time- frequency filter
  • 相关文献

参考文献8

  • 1GHOST K, DUTrA P K, DUTTAGUPTA P B. Nonuniform sampling and reconstruction of waveforms and its extension to wide band signal[J]. IEEE, 1994:708-711.
  • 2GILBERT G W. Non-uniform sampling in wavelet subspaces[J]. IEEE., 1999:2057-2059.
  • 3VAQUEZ C, DUBOIS E, KONRAD J. Reconstruction of non-uniformly sampled images in spline spaces[J].Proc. of IEEE., 2005: 713-725.
  • 4杨守志,程正兴,杨建伟.r重小波子空间上的Shannon型均匀和非均匀采样定理[J].工程数学学报,2003,20(2):1-6. 被引量:5
  • 5YOUNG R. An introduction to non-harmonic Fourier Series[J]. Academic Press, NY 1980.
  • 6BABIC D, RENFORS M. Reconstruction of non- uniformly sampled signal using transposed farrow structure[J]. IEEE., 2004: 221-224.
  • 7YONINA C E, ALAN V. Filter-bank reconstruction of band-limited signal from non-uniform and generalized samples[J]. IEEE Trans. on signal processing, 2000, 48: 2864-2875.
  • 8MA B T, ZHU Y L, FAN H Q. TDC based radar signal reconstruction from periodic non-uniform Samples[J]. ICEMI'2007: 673-676.

二级参考文献8

  • 1Waiter G, A sampling theorem for wavelet subspace[J]. IEEE Trans Inform Theory,1992;38(2):881 -884.
  • 2Liu Y, Walter G. Irregular sampling theorem in wavelet subspace[ J]. The Journal of Fourier Analysis and Appllcation, 1995 ;2(2) : 181 - 189.
  • 3Daubechies I. Ten lectures on wavelets[M]. Philadephia: SIAM Publ, 1993.
  • 4Goodman T N, Lee S L. Wavelets of multiplicity r [ J ]. Trans Amer Math Soc, 1994 ; 342 ( 1 ) : 307 - 324.
  • 5Chui C K, Lian J A. A study of orthonormal multi-wavelets[J]. J Appl Numer Math,1996;20(1):272-298.
  • 6ChuiCK著 程正兴译.小波分析导论[M].西安:西安交通大学出版社,1995..
  • 7孙文昌,周性伟.向量小波子空间上的采样定理[J].科学通报,1999,44(3):262-265. 被引量:3
  • 8杨守志,程正兴.有限区间小波子空间上的采样定理及H^2(I)空间中函数的逼近表示[J].数学物理学报(A辑),2001,21(3):410-415. 被引量:8

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部