期刊文献+

基于全局的即时垃圾邮件过滤模型的研究 被引量:6

Research of anytime anti-spam model addressing based on whole entry
下载PDF
导出
摘要 基于贝叶斯模型,提出了一种更为灵活的、有效的、基于全局的即时分类模型的垃圾邮件分类模型,pValue优先邮件过滤模型。该分类模型着眼于全局的实例,在所有邮件中选取最需要得到评估的实例进行计算,反复进行该过程并在需要的时候中断进程,最终得到实例的全局最优化。我们使用UCI提供的邮件样本进行验证。实验结果验证了该分类模型比FCFS即时分类模型的性能更优。在即时分类的早期较好的改善分类效果降低分类的0-1损失错误率和RMSE错误率,并伴随着计算资源的增加得到更好的分类准确率。 This paper proposes a new anti-spare model: p-Value first anti-spam model. This model addresses on the whole mail, and lets email which needs get evaluation first get new calculate resource. It can get the best result on whole entry. The UCI's email sample has been used to examine this model. The result of experiment shows that this model can get better performance.
作者 惠孛 吴跃
出处 《电子测量与仪器学报》 CSCD 2009年第5期46-51,共6页 Journal of Electronic Measurement and Instrumentation
关键词 贝叶斯分类 即时分类 垃圾邮件过滤 Bayes classification anytime classification anti-spam
  • 相关文献

参考文献7

  • 1ANDROUTSOPOULOS I, KOUTSIAS J, KONSTANTINOS V, et al. An experimental comparison of naive bayesian and keyword-based anti-spam filtering with personal email messages[C]. Athens: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2000: 160-167.
  • 2毛建旭,王耀南,孙炜.模糊B样条基函数神经网络的遥感图像分类器[J].电子测量与仪器学报,2002,16(4):16-20. 被引量:5
  • 3靳敏.基于小波分析的车型识别[J].电子测量与仪器学报,2003,17(2):31-34. 被引量:6
  • 4YANG Y, WEBB G, KORB K,et al. Classifying under computational resource constraints: Any-time classification using probabilistic estimators, Machine Learning,2007, 69: 35-53.
  • 5HUI B, WU Y. A new anytime classifier based on AAPE: Anytime averaged probabilistic with weight estimator (AAPWE)[C]. DaLian: The 4th International Conference on Wireless Communications, Networking and Mobile Computing (WICOM2008), 2008.
  • 6WEBB G I, BOUGHTON J, WANG Z. Not so naive Bayes: Averaged onedependence estimators[J]. Machine Learning, 58(1), 5-24, 2005.
  • 7WITTEN I H, FRANK E. Data mining: Practical machine learning tools and techniques with java implementations (2nd ed.). Morgan Kaufmann. 2005.

二级参考文献6

共引文献8

同被引文献47

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部