期刊文献+

抑制干扰的频域盲源分离后处理算法 被引量:3

Postprocessing Algorithm for Interference Suppressing in Frequency-domain Blind Source Separation
下载PDF
导出
摘要 在混响时间较长的情况下,一般的频域盲源分离算法可能不完全收敛,导致分离信号中包含部分干扰信号,降低分离算法性能。根据语音信号在时频域分布的稀疏特性,估计分离信号中目标信号和干扰信号的功率谱密度,提出一种改进的频域维纳滤波后处理算法。仿真实验结果证明,与原有频域维纳滤波算法相比,该算法在不增加计算复杂度的前提下,抑制的干扰信号增加了1dB~2dB,是一种有效的频域盲源分离后处理算法。 Under long time reverberation circumstances, general frequency-domain blind source separation algorithm may converge incompletely, which result in interference signal in separation signali and the algorithm performance decrease. This paper proposes an improved Wiener filtering postprocessing algorithm according to the sparse properties of speech signal in time-domain and frequency-domain, and by estimating power spectrum density of separation signal and interference signal in separation signal. Experimental results show that compared to the original Wiener filtering algorithm, this algorithm can increase interference signal by 1 dBN2 dB without increasing computation complexity.
出处 《计算机工程》 CAS CSCD 北大核心 2009年第11期202-204,共3页 Computer Engineering
基金 温州市科技计划基金资助项目"语音的盲分离和说话人定位技术研究"(G20060102)
关键词 盲源分离 维纳滤波 后处理 blind source separation Wiener filtering postprocessing
  • 相关文献

参考文献7

  • 1Araki S, Makino S, Nishikawa T, et al. Fundamental Limitation of Frequency Domain Blind Separation for Convolutive of Speech[C]// Proc. of IEEE Int'l Conf. on Acoustics, Speech, Signal Processing. Salt Lake City, USA: [s. n.], 2001: 2737-2740.
  • 2Park K S, Park J S, Son K S, et al. Postprocessing with Wiener Filtering Technique for Reducing Residual Crosstalk in Blind Source Separation[J]. IEEE Signal Processing Letters, 2006, 13(12): 749-751.
  • 3Bingham E, Hyvarinen A. A Fast Fixed-point Algorithm for Independent Component Analysis of Complex Valued Signals[J]. Journal of Neural Systems, 2000, 10(I): 1-8.
  • 4Matsuoka K. Minimal Distortion Principle for Blind Source Separation[C]//Proceedings of the 41st SICE Annual Conference. Osaka, Japan: [s. n.], 2002: 2138-2143.
  • 5Wang Wenwu. A Novel Hybrid Approach to the Permutation Problem of Frequency Domain Blind Source Separation[C]// Proceedings of the 5th International Conference on Independent Component Analysis and Blind Signal Separation. Granada, Spain: [s. n.], 2004: 532-539.
  • 6Campbell D R. The ROOMSIM User Guide(V3.3)[Z/OL]. [2008- 09-22]. http://media.paisley.ac.uk/_campbell/Roomsim/.
  • 7Fevotte C, Gfibonval R, Vincent E. BSS EVAL Toolbox User Guide[R]. Rennes, France: IRISA, Technical Report: 1706, 2005.

同被引文献31

  • 1黄高明,杨绿溪,何振亚.一种基于盲源分离的雷达抗干扰技术[J].电路与系统学报,2004,9(6):94-99. 被引量:14
  • 2张小兵,马建仓,陈翠华,刘恒.基于最大信噪比的盲源分离算法[J].计算机仿真,2006,23(10):72-75. 被引量:27
  • 3Tiemin Mei, Fulian Yin, Jun Wang. Blind Source Separation Based on Cumulants With Time and Frequency Non- Properties [ J] , IEEE Trans. Audio, Specch and Languiage Processing, 2009 ,Vol. 17, No. 6, 1099-1108.
  • 4A. Hyvarinen, J. Karhunen, E. Oja, Independent Component Analysis [ M ]. New York: John Wiley and Sons, 2001.
  • 5Intae Lee, Taesu Kim, Te-won Lee, Fast fixed-point independent vector analysis algorithms for convolutive blind source separation[ J], 2007, Signal Processing 87, 1859- 1871.
  • 6Matsuoka K. , Nakashima S. Minimal distortion principle for blind source separation [ C ]. Proceeding of the 41st SICE Annual (SICE 2002), Washington, 2002,4, 2138- 2143.
  • 7Atsuo Hiroe, Solution of Permutation Problem in Frequency Domain ICA, Using Multivariate Probability Density Functions[C], ICASSP 2006. Toulouse, France, LNCS3889, 601- 608.
  • 8Alireza Masnadi-Shirazi, Bhaskar Rao, Independent Vector Analysis Incorporating Active and Inactive States [ C ], IC- ASSP 2009, Taipei, LNCS5441, 1837-1840.
  • 9Araki S. , Mukai R. , Makino S. Nishikawa, et al. , The fundamental limitation of frequency domain blind source separation for convolutive mixtures of speech [ J ], IEEE Trans. Speech and Audio Processing ,2003, Vol. 11,109-116.
  • 10Atsuo Hiroe, Blind Vector Deconvo/ution: Convolutive Mixture Models in Short-Time Fourier Transform Domain[ C ] , ICASSP 2007, Honolulu, U. S. A. , LNCS 4666, 471- 479.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部