期刊文献+

受电弓滑板磨耗检测图像处理算法的研究及实现 被引量:3

Research and Realization of Image Processing Algorithm in Pantograph Slide Abrasion Detection
下载PDF
导出
摘要 由于图像检测受电弓滑板磨耗能实现在线自动检测,且检测精度较高,而该检测方法的关键是对采集到的受电弓图片进行图像处理,因此研究图像处理算法具有非常重要的意义。检测系统采用4个CCD摄像机实现受电弓前后滑板的初始图像采集,然后将获取到的图片传输并存储到检测主机上,通过后期的图像处理,实现滑板磨耗的自动检测,并输出数据报表和磨耗曲线等。图像处理算法主要包括图像预处理、边缘检测和连接、导线及滑板边缘定位等。其中,边缘检测和定位算法是关键,也是决定系统检测精度的重要因素。主要对Canny边缘检测、形态学边缘检测和小波边缘检测进行实验验证,并比较其边缘提取效果。结果表明,Canny边缘检测精度更高,而小波边缘检测虽然定位更准确,但精度较低。因此,最终选择Canny边缘检测,结合边缘连接进行处理,并给出了检测结果图。 As detecting the pantograph slide abrasion based on image processing can realize the online and automatic inspection, and the image processing after collecting the picture of the pantograph is the crucial part of the system, therefore researching the image processing algorithm is of great importance. The system adopt 4 CCD cameras to collect the original images of the front and back slide of the pantograph, then the images are transmitted to the main detection PC and stored there. Through post-processing of the pictures, the system can inspect the slide abrasion automatically and output the data report and abrasion curve. The image processing algorithms mainly include image preprocessing, edge detecting and linking,contact wire and slide edge location and so on. There into, the edge detecting and location algorithm are the key and they are signifi dant factors which determine precision of the inspection system. This paper emphasizes on the experimental validation and effect of the edge distilling of three main edge detecting methods which are Canny edge detecting, morphology edge detecting and wavelet detecting. The result shows that the measuring precision of the Canny edge detecting is higher than that of the wavelet edge detecting which has higher edge location accuracy. So the Canny edge detecting combined edge linking is adopted finally. At last,the paper gives the detecting result picture.
出处 《现代电子技术》 2009年第11期191-194,共4页 Modern Electronics Technique
关键词 滑板磨耗检测 图像处理 边缘检测 形态学 小波变换 定位 slide abrasion detection image processing edge detection morphology wavelet transformation location
  • 相关文献

参考文献9

二级参考文献19

  • 1迟健男,方帅,曾鹏鑫,徐心和.复合顺序形态变换在红外图像边缘检测中的应用[J].东北大学学报(自然科学版),2005,26(1):12-12. 被引量:2
  • 2雷丽珍.数字图像边缘检测方法的探讨[J].测绘通报,2006(3):40-42. 被引量:72
  • 3苑玮琦,王建军,张宏勋.一种基于梯度极值的边缘检测算法[J].信息与控制,1997,26(2):117-120. 被引量:21
  • 4[3]K R Castleman.数字图象处理[M].朱志刚,林学,石定机,译.北京:电子工业出版社,1999:402-404.
  • 5章毓晋.图像分割[M].北京:科学出版社,2001..
  • 6王晓丹,等.基于MATLAB的图像分析与设计--图像处理[M].西安:西安电子科技大学出版社,2000.9.
  • 7Zhao Y Q, Gui W H, Chen Z C. Edge detection bard on multi-structure elements morphology[C].Proceedings of the 6th World Congress on Intelligent Control and Automation. Dalian: Institute of Electrical and Electronics Engineers Inc. , 2006:9795 - 9798.
  • 8Bai X Z, Zhou F. Edge detection based on mathematical morphology and iterative thresholding [ C ] . 2006 International Conference on Computational Intelligence and Security. NY: IEEE, 2006:1849 - 1852.
  • 9Serra J. Image analysis and mathematical morphology [ M ]. New York:Academic Press, 1982.
  • 10Li Z H, Yang Y P, Jiang W. Multi-scale morphologic tracking approach for edge detection [ C ] .The 4th International Conference on Image and Graphics. NY IEEE, 2007 : 358 - 362.

共引文献55

同被引文献29

  • 1罗鹏,王泽勇,高晓蓉,王黎,赵全柯.电力机车入库受电弓滑板磨耗检测[J].光电工程,2004,31(B12):88-90. 被引量:19
  • 2LEONARD G, HAMEY C, TIMOTHY W, et al. Pan- cam.. In-Service Inspection of Locomotive Pantographs [C]// Digital Image Computing Techniques and Applica- tions: 9^th Biennial Conference of the Australian Pattern Recognition Society. Glenelg: 2007 : 493-499.
  • 3YANG Kai, WANG Li, GAO Xiao-rong, et al. Applica- tion of CCD Measurement Technique for Wear on Panto-graph Sliding Plates[C]// 4^th International Symposium on Advanced Optical Manufacturing and Testing Technolo- gies: Optical Test and Measurement Technology and E- quipment. Belingham : STIE: 2009,7283 : 34-37.
  • 4CANDES E J, DONOHO D L. New Tight Frames of Cur- velets and Optimal Representations of Objects with Piece- wise C2 Singularities [J]. Communications on Pure and Applied Mathematics, 2002,57 (2) : 219-266.
  • 5CANDES E J, DEMANET L, DONOHO D L, et al. Fast Discrete Curvelet Transforms[J].Multiseale Model- ing & Simulation, 2006,5(3) : 861-899.
  • 6CANDES E J , DONOHO D L . Curvelets[R]. USA Stanford University , 1999.
  • 7STARCKJ L E, CANDES E J,DONOHO D L. The Cur velet Transform for Image Denoising[J]. IEEE Transac tions on Image Processing, 2002,11(6) : 670-684.
  • 8MYUNGJIN C, YOUNG K R, et al. Fusion of Multi- spectral and Panchromatic Satellite Images Using the Curvelet Transform[J].Geoseience and Remote Sensing Letters, 2005,2(2) : 136-140.
  • 9STARCK J , MURTAGH F , CANDES E J, DONOHO D. Gray and Color Image Contrast Enhancement by the Curvelet Transform [J]. IEEE Transactions on Image Processing, 2003,12(6) : 706-717.
  • 10CROSBY R. Curvelet Decomposition for Detection of Cy- lindrical Targets[C]//15^th IEEE International Conference on Image Processing. Piscataway: IEEE Press, 2008: 2832 -2835.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部