摘要
为提高GPS高程拟合模型在逼近高程异常曲面时的逼近精度和可信度,探讨了GPS高程转换的迭加模型(遗传神经网络模型和神经网络综合模型)。通过实测的GPS水准数据对迭加模型和单一模型进行分析比较,结果表明迭加模型逼近高程的精度和可靠性均高于单一模型。
In order to improve approximating precision and reliability of GPS leveling of imitated model in approxi-mating anormal height curved surface, the paper discussed the combined model of GPS elevation height to normal height, such as the genetic neural network model and neural network combined model. We compared the two combined models with single models. The results indicate that the precision and reliability are better than any single model.
出处
《西安科技大学学报》
CAS
北大核心
2009年第3期339-343,共5页
Journal of Xi’an University of Science and Technology
基金
国家测绘局重点实验室基金项目(KLM200818)
河南省平顶山工学院2008年院级基金资助项目