期刊文献+

基于内容过滤的电子商务推荐系统研究 被引量:16

Research on E-Commerce Recommender System Based on Content-Based Filtering
下载PDF
导出
摘要 个性化推荐在网络应用中能有效提高服务质量,在电子商务中的表现更加突出。论述了基于内容过滤的电子商务推荐系统,利用向量空间模型挖掘用户独特的兴趣特征,然后根据产品信息特征的量化值产生推荐序列,并根据用户的反馈信息自适应学习,以提高系统的综合性能。实验结果表明,基于内容过滤的推荐方法其总体性能随时间的推移得到了提高。 The application of personalized recommendation in the Internet effectively improved its service, especially the service of E - commerce, content- based filtering E- commerce recommender syste^n was discussed fully in this paper. Users' unique features can be explored by means of vector space model (VSM) firstly. Then based on the qualitative value of products information, the recommender lists were obtained. Since the system can adapt to the users' feedback automatically, its performance were improved comprehensively. According to the experiments result, the overall performance of the recommender based on content - based filtering was enhanced with time.
作者 曹毅 贺卫红
机构地区 湖南工学院
出处 《计算机技术与发展》 2009年第6期182-185,共4页 Computer Technology and Development
基金 湖南省教育科学研究项目(08C234) 湖南省软科学研究计划项目(04ZH6005) 湖南省普通高校教学改革研究项目(2006191)
关键词 电子商务 推荐系统 个性化推荐 向量空间模型 E -eornmeree recommender system personalized recommendation VSM
  • 相关文献

参考文献9

二级参考文献40

  • 1马文斌,王庆.Web内容过滤实现方法的研究[J].计算机工程,2004,30(B12):588-589. 被引量:4
  • 2YU Fei,SHEN Yue,AN Ji-yao,ZHANG Ling-fen,ZHU Miao-liang.Information Audit Based on Image Content Filtering[J].Wuhan University Journal of Natural Sciences,2006,11(1):234-238. 被引量:3
  • 3周文刚,王景中.基于语义的信息过滤算法的设计与实现[J].周口师范学院学报,2006,23(2):96-100. 被引量:3
  • 4边肇祺.模式识别[M].清华大学出版社,1999..
  • 5石晶 龚震宇.基于WEB挖掘的个性化服务技术[J].计算机科学,2002,(8):168-171.
  • 6Volokh E. Personlization and privacy [J]. Communications of the ACM,2000,43(8):84-88.
  • 7Wu Y H,Chen Y C,Chen AL P. Enabling personalized recommendation on the web based on user interests and behaviors[A]. In: Klas W. Proceedings of the 11th International Workshop on Research Issues in Data Engineering[C]. Los Alamitors, CA: IEEE CS Press,2002.17-24.
  • 8Pretschner A. Ontology based personalized search[D]. Lawrence,KS: University of Kansas, 1999.
  • 9Adornavicius G, Tuzhilin A. User profiting in preso-nalization applications through rule discovery and validation[A]. In: Lee D, Schkolnich M, Provost F, et al. Proceeding of the 5th International Conference on Data Mining and Knowledge Discovery[C]. New York:ACM Press, 1999. 377-381.
  • 10Sripada S,Reiter E,Hunter J ,et al. A Two- stage Model for Content Determination[A]. In Proceedings of the 8th ACLEWNLG'2001[C]. Toulousc,France: [s. n. ] ,2001. 3 - 10.

共引文献130

同被引文献112

  • 1韩慧,毛锋,王文渊.数据挖掘中决策树算法的最新进展[J].计算机应用研究,2004,21(12):5-8. 被引量:47
  • 2秦春秀,赵捧未,窦永香.基于用户兴趣的个性化检索[J].情报学报,2005,24(4):449-452. 被引量:7
  • 3吴辉娟,袁方.个性化服务技术研究[J].计算机技术与发展,2006,16(2):32-34. 被引量:20
  • 4苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:386
  • 5Rucker J, Polanco M J. Siteseer: personalized navigation for the web [ J ]. Communications of the ACM, 1997,40(3) :73-75.
  • 6Konstan J, Miller B, Maltz D, et al. GroupLens : applying collaborative filtering to usenet news[ J]. Communications of the ACM, 1997,40 ( 3 ) :77-87.
  • 7Mladenic D. Machine learning for better Web browsing[ C ]//In :Rogers S, Iba W. AAAI 2000 Spring Symposium Technical Reports on Adaptive User Interfaces. Menlo Park, CA:AAAI Press, 2000 : 82 - 84.
  • 8Bollacker K D, Lawrence S, Giles C L. Discovering relevant scientific literature on the Web [ J ]. IEEE Intelligent Systems, 2000,15(2) :42-47.
  • 9Salton G, Wong A, Yang C S. A vector space model for automatic indexing[ J]. Information Retrieval and Language Processing, 1975,18 ( 11 ) :613-620.
  • 10Matthew R, Mclaughl N, Jonathan L. Content-based filtering & collaborative filtering: A collaborative filtering algorithm and evaluation metric that accurately model the user experience[ C]//Proceeding of the 27th ACM SIGIR Conf. Sheffield: ACM Press, 2004:329-336.

引证文献16

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部