期刊文献+

对少齿差行星减速器结构的改进 被引量:1

On the Structure of the Reducer with Small Tooth Number Difference
下载PDF
导出
摘要 针对现有少齿差减速器存在的问题,对其结构提出了改进意见,从而得到了一种新型的少齿差减速器——完全平衡少齿差减速器。它主要由一根输入轴、两个对称安装的双偏心套、两个薄行星齿轮、一个厚行星齿轮、一个内齿轮和输出系统等组成。无需附加任何配重,便能实现整机的完全平衡。具有运转平稳、承载能力大、机械效率高等许多优点,特别适用于高速、重载场合。 In allusion to the disadvantages of the reducer with small tooth number difference in existence,A new type of reducer is introduced.It is mainly made up of several parts:one input shaft,two sleeves with twain eccentricity blocks,two thin planet gears,one thick planet gears,one inner gear ring and a output shaft system.Without any matched heavy,it can also realize the whole complete balance.There are many advantages,such as stable running,great bearable load and high mechanical efficiency.So it is suitable for high-speed and heavy-load situation especially.
出处 《长江大学学报(自科版)(上旬)》 CAS 2009年第1期85-87,共3页 JOURNAL OF YANGTZE UNIVERSITY (NATURAL SCIENCE EDITION) SCI & ENG
关键词 少齿差减速器 结构 平衡 机械效率 reducer with small tooth number difference structure balance mechanical efficiency
  • 相关文献

参考文献5

  • 1Vapnik V, The Nature of Satistieal Learning Theory [M] . New York: Springer Verlag, 1995.
  • 2夏国恩,曾绍华,金炜东.支持向量回归机在铁路客运量时间序列预测中的应用[J].计算机应用研究,2006,23(10):180-182. 被引量:13
  • 3Osuna E, Freund R, Girosi F. Training Support Vector Machines: An Application to Face Detection [C] . Proceedings of 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, LosAlamitos, CA, USA: IEEE Computer Society, 1997. 130-136.
  • 4Nello Cristianini, John Shawe-Taylor. An Introduction to Support Vector Machines and Other Kernd-based Learning Methods [M] . Cambridge: Cambridge University Press, 2000.
  • 5杨居义,易永宏.基于BP神经网络的地震预测研究[J].微电子学与计算机,2008,25(10):129-132. 被引量:19

二级参考文献13

  • 1王椿镛,王贵美,林中洋,张四维,刘运生,毛桐恩,刘元生,段以伟.用深地震反射方法研究邢台地震区地壳细结构[J].地球物理学报,1993,36(4):445-452. 被引量:119
  • 2岳毅宏,韩文秀,程国平.多变量时间序列相空间重构中参数的确定[J].控制与决策,2005,20(3):290-293. 被引量:14
  • 3Vapnik V.An Overview of Statistical Learning Theory[J].IEEE Trans.on NN.,1999,10(3):988-999.
  • 4Cortes C,Vapnik V.Support Vector Networks[J].Machine Lear-ning,1995,20 (4):273-297.
  • 5Osuna E,Freund R,Girosi F.Training Support Vector Machines:An Application to Face Detection[C].Proceedings of 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,LosAlamitos,CA,USA:IEEE Computer Society,1997.130-136.
  • 6Guyon I,Weston J,Barnhill S,et al.Gene Selection for Cancer Classification Using Support Vector Machines[J].Machine Lear-ning,2002,46 (6):389-422.
  • 7The World Bank Transportation.Water and Urban Development Department[EB/OL].http://www.rail.info.com/gb/db/wbtjsj/default1asp,2000-01.
  • 8Ito K,Nakano R.Optimizing Support Vector Regression Hyperpara-meters Based on Cross-validation[J].Neural Networks,2003,(3):2077-2082.
  • 9张家茹,邵学钟,殷秀华,等.深部构造背景和强震的深部孕震环境[M].北京:地震出版社,1993:58-78.
  • 10刘国栋.山西临汾地区的地壳上地幔构造裂谷模型和大地震震源结构[M].北京:地震出版社,1995:180-190.

共引文献29

同被引文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部