期刊文献+

一种参数优化旋转广义回归神经网络模型 被引量:7

Parameter-optimized rotated general regression neural network model
下载PDF
导出
摘要 针对传统广义回归神经网络的模型结构与数据分布失配问题和模型参数难以确定问题,提出了一种参数优化旋转广义回归神经网络模型的设计方法。在传统广义回归神经网络模型的基础上,通过坐标旋转,增加了一个模型结构参数,并采用粒子群算法对旋转广义回归神经网络的模型参数寻找最优值,从而改进了广义回归神经网络模型精确度。两个工业实例的实验结果表明该方法的有效性。 To resolve the problem of the mismatching of model structure and data distribution as well as the problem of determining model parameters difficultly in the traditional general regression neural network (GRNN), a scheme is proposed to design a parameter-optimized rotated network. Through the coordinate rotation, an additional parameter of model structure is introduced to the traditional general regression neural network. Moreover, the particle swarm optimization algorithm is adopted to find the best values of parameters of the rotated GRNN ; hence the model precision is improved. The experimental results of two industrial applications have shown the effectiveness of the method.
出处 《电机与控制学报》 EI CSCD 北大核心 2009年第3期442-447,共6页 Electric Machines and Control
基金 国家自然科学基金(60575036) 哈尔滨市科技创新人才研究专项资金项目(2007RFXXG023) 哈尔滨理工大学优秀拔尖创新人才培养基金(20080103)
关键词 广义回归神经网络 粒子群优化 坐标旋转 参数优化 general regression neural network particle swarm optimization coordinate rotation parameter optimization
  • 相关文献

参考文献6

  • 1SPECHT D F. A general regression neural network [ J]. IEEE Transactions on Neural Networks, 1991,2(6) : 568 -576.
  • 2BURCU E, TULAY Y. Improving classification performance of sonar targets by applying general regression neural network with PCA [ J ]. Expert Systems with Applications, 2008, 35 ( 1/2 ) : 472 - 475.
  • 3JELENA P, SVETLANA I, ZORICA D, et al. An investigation into the usefulness of generalized regression neural network analysis in the development of level A in vitro - in vivo correlation [J]. European Journal of Pharmaceutical Sciences, 2007, 30 ( 3/4 ) : 264 - 272.
  • 4GHOLAMREZAEI M, GHORBANIAN K. Rotated general regression neural network [ C ]//Proceedings of International Joint Conference on Neural Networks, August 12 - 17, Orlando, Florida, USA, 2007:1959 - 1964.
  • 5DEL VALLE Y, VENAYAGAMOORTHY G K, MOHAGHEGHI S, et al. Particle swarm optimization: basic concepts, variants and applications in power systems [ J ]. IEEE Transactions on Evolutionary Computation, 2008, 12(2) :171 - 195.
  • 6SOLTANI M R, GHORBANIAN K. Wind Tunnel Calibration [ R]. Tehran: Sharif University of Technology, 2004.

同被引文献79

引证文献7

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部