期刊文献+

一个具有暂时免疫和非线性接触率的SIS流行病模型的分析(英文)

Analysis of an SIS Epidemic Model with Temporary Immunity and Nonlinear Incidence Rate
下载PDF
导出
摘要 本文研究一个具有时滞,一般接触率,常数出生和疾病引起死亡的流行病模型。假设时滞表示暂时免疫期,即恢复者再次变成易感者所需要的时间,同时在模型中考虑了对易感者和恢复者的接种。本文得到了基本再生数R0。分析了模型的无病平衡点和地方病平衡点的存在性。通过Hurwitz准则,研究了无病平衡点和地方病平衡点的局部渐近稳定性。通过Liapunov泛函和Lasalle不变原理,证明了无病平衡点的全局渐近稳定性及在双线性接触率的情况下地方病平衡点的全局渐近稳定性。研究结果表明:R0 与对易感者的有效接种率p有关,并且通过增加接种率p可以根除疾病。最后给出了数值模拟。 Studied in this paper is an SIS epidemic model with a time delay, a general contact rate, constant recruitment and disease-caused death. It is assumed that the time delay represents the temporary immunity period, i.e., the time from recovered to becoming the susceptible again, which incorporates the infected recovery and the recovery of the susceptible due to vaccinating. The basic reproduction number is found. The existence of disease-free and endemic equilibria is analyzed. By the Hurwitz criterion, the local asymptotic stability of disease-free and endemic equilibria is investigated. By means of the Liapunov functional and LasaIle's invariant principle, we prove the global stability of the disease-free equilibrium and the endemic equilibrium in a special case that the incidence rate is bilinear. It is shown that the reproduction number is related with the rate of efficient vaccination for the susceptible, and the disease may be eradicated by increasing the efficient vaccination rate. Numerical simulations support our analytical conclusions.
出处 《工程数学学报》 CSCD 北大核心 2009年第3期407-415,共9页 Chinese Journal of Engineering Mathematics
基金 The National Natural Science Foundation of China (10671011)
关键词 SIS模型 时滞 接种 平衡位置 全局稳定性 SIS model time delay vaccination equilibria global stability
  • 相关文献

参考文献1

二级参考文献8

  • 1Kermack W O, McKendrick A G. Contributions to the matlhematical theory of epidemics-Part 1[J].Proc RoySoc London Ser A, 1927,115(3) :700-721.
  • 2Mena-Lorca J, Hethcote H W. Dynamic models of infectious diseases as regulators of population sizes[J]. J Math Biol, 1992,30(4):693-716.
  • 3Li J, Ma Z. Qualitative analysis of SIS epidemic model with vaccination and varying total population size[J]. Math Comput Modelling ,2002,35(11/12) :1235-1243.
  • 4Heesterbeck J A P, Metz J A J. The saturating contact rate in marriage-and epidemic models[ J]. J Math Biol, 1993,31(2) :529-539.
  • 5Brauer F, Van den Driessche P. Models for transmission of disease with immigration of infectives[ J].Math Biosci, 2001,171(2): 143-154.
  • 6Han L,Ma Z,Hethcote H W. Four predator prey models with infectious diseases[J]. Math Comput Modelling, 2001,34(7/8): 849-858.
  • 7LaSalle J P. The Stability of DynamicalSystem [ M]. New York: Academic Press, 1976.
  • 8Jeffries C, Klee V, Van den Driessche P. When is a matrix sign stable? [ J]. Canad J Math, 1977,29(2) :315-326.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部