期刊文献+

DGH方程的持久性和唯一连续性(英文) 被引量:2

Persistence and Unique Continuation Properties of Solutions of the DGH Equation
下载PDF
导出
摘要 本文研究了DGH方程的持久性和唯一连续性。我们证明:如果DGH方程的强解与它的空间导数在初始时刻指数递减,而且在以后的任一时刻解本身也指数递减,那么解必然恒为零。 The persistence and unique continuation properties of solutions of the DGH equation are studied in this paper. It is shown that a strong solution of the DGH equation, initially decaying exponentially together with its spacial derivative, must be identically equal to zero if it also decays exponentially at a later time.
作者 付英 马逸尘
出处 《工程数学学报》 CSCD 北大核心 2009年第3期416-422,共7页 Chinese Journal of Engineering Mathematics
基金 The Natural Science Foundation of China (10671153 10671156)
关键词 DGH方程 唯一连续性 持久性 DGH equation unique continuation property persistence property
  • 相关文献

参考文献5

  • 1Dullin H, Gottwald G, Holm D. An integrable shallow water equation with linear and nonlinear dispersion[J]. Physical Review Letter, 2001, 87:1945-1948
  • 2Kenig C E, Ponce G, Vega L. On the support of solutions to the generalized KdV equation[J]. Ann Inst H Poincare Anal Non Lineaire, 2002, 19:191-208
  • 3Himonas A A, Misiolek G, Ponce G, Zhou Y. Persistence properties and unique continuation of solutions of the Camassa-Holm equations[J]. Comm Maths Phys, 2007, 271:511-522
  • 4Liu Y. Global existence and blow-up solutions for a nonlinear shallow water equation[J]. Math Ann, 2006, 335:717-735
  • 5Tian L, Gui G, Liu Y. On the Cauchy problem and the scattering problem for the Dullin-Gottwald-Holm equation[J]. Comm Math Phys, 2005, 257:667-701

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部