期刊文献+

脉冲控制的带时滞的捕食食饵系统的持续生存和周期解

Permanence and periodic solution of delay predator-prey system with impulse effect
下载PDF
导出
摘要 讨论了一类脉冲控制的带时滞的捕食食饵系统的动力学行为,首先利用脉冲微分方程比较原理证明了系统的持续生存性,进而证明系统周期解的存在性,给出了周期解全局渐进稳定的充分性条件. Discussed the dynamical behavior of delay predator-prey system with impulsive effect. Proved that the system is permanent under some appropriate conditions by the comparative theorem of impulsive differential equation. Furthermore, obtained a set of sufficient conditions which guarentee the existence and global asymptotic stability of the positive periodic solution.
作者 郭振 师向云
出处 《高师理科学刊》 2009年第3期1-4,共4页 Journal of Science of Teachers'College and University
基金 河南省教育厅基金项目(2006520012)
关键词 脉冲微分方程 时滞微分方程 周期解 捕食与食饵系统 impulsive differential equation delay differential equation periodic solution predator-prey system
  • 相关文献

参考文献7

  • 1Lu Zhonghua, Chi Xuebin, Chen Lansun. Impulsive control strategies in biological control of pesticide[J]. Theoretical Population Biology, 2003 ( 64 ): 39-47.
  • 2Liu Xianning, Chen Lansun. Complex dynamics of Holling type Ⅱ Lotka-Volterra predator-prey system with impulsive perturbation on the predator[J]. Chaos Solition and Fractals, 2003 ( 16 ): 311-320.
  • 3ZhangYujuan, LiuBing, Chen Lansun. Extinction and permanence of a two-prey one-predator system with impulsive effect[J]. Journal of Applied Mathematics, 2003 ( 20): 1-17.
  • 4Tang S Y, Chen L S. The periodic predator-prey Lotka-Voherra model with impulsive effect[J]. Mechanics in Medicine and Biology, 2002 ( 2 ): 267-296.
  • 5张树文,陈兰荪.具有脉冲效应的非自治捕食者-食饵系统周期正解[J].大连理工大学学报,2004,44(3):320-325. 被引量:6
  • 6Lakmilantham V, Bainov D D, Simeonov P S. Theory or impulsive differential equations[M]. Singapore: World Scientigic, 1989.
  • 7Bainov D D, Simeonov P S. Impulsive differentialequation periodic solutions and applications[M]. England: Longman Harlow, 1993.

二级参考文献7

  • 1BRAUER F, SOUDACK A C. Constant-rate stocking of predator-prey system [J]. J Math Biol, 1981, 11: 1-14.
  • 2BRAUER F, SOUDACK A C. Stability regions in predator-prey systems with constant-rate prey harvesting [J]. J Math Biol, 1979, 8: 55-71.
  • 3LAKSMIKANTHAM V, BAINOV D D, SIMEONOV P S. Theory of Impulsive Differential Equations [M]. Singapore: World Scientific, 1989.
  • 4PANETTA J C. A mathematical model of periodically pulsed chemotherapy: tumor recurrence and metastasis in a competition environment [J]. Bull of Math Biol, 1996,58:425-447.
  • 5BAINOV D D, SIMEONOV P S. Impulsive differential equations: periodic solutions and applications [A]. Pitman Monographs and Surveys in Pure and Applied Mathematics [M]. New York: Wiley, 1993.
  • 6TANG San-yi, CHEN Lan-sun. The periodic predator-prey Lotka-Volterra model with impulsive effect [J]. J Mech in Med and Biol, 2002, 2(3): 267-296.
  • 7GAINES R E, MAWHIN J L. Coincidence Degree and Nonlinear Differential Equations [M]. Berlin: Springer, 1977.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部