期刊文献+

基于改进BP网络的装甲装备机动性能评估模型 被引量:2

Evaluation Model for Flexibility Effectiveness of Armored Weapon System Based on Improved BP Neural Network
下载PDF
导出
摘要 收敛速度慢、易陷入局部极值是传统的BP神经网络难以避免的问题,最终可能导致网络训练失败。在量化装甲装备机动性能指标的基础上,采用遗传算法对BP神经网络权值进行优化,用自适应梯度下降法对传统BP神经网络进行训练,从而建立装甲装备机动性能评估模型,并通过二次训练得到评估值。仿真结果表明该改进网络收敛速度明显优于传统网络,能有效避免局部极值问题。 inevitable problems in traditional BP neural networks like slow convergence and easy in local extremum may finally lead to abortive net training. On the basis of quantifying the index of armored equipment's flexibility performance, we ,optimized the weight of BP neural network by using genetic algorithm; trained traditional BP neural network through adaptive gradient descent algorithm, and established evaluation model for flexibility performance of armored equipment; while trained network to obtain evaluation value. Simulation results show the convergent speed of the improved network is much better than that of traditional neural network, and can effectively avoid local extremum.
出处 《兵工自动化》 2009年第6期92-93,96,共3页 Ordnance Industry Automation
关键词 装甲装备机动性能 遗传算法 BP神经网络 二次训练 Flexibility effectiveness of armored weapon system Genetic algorithm BP neural network Secondary training
  • 相关文献

参考文献4

二级参考文献16

共引文献28

同被引文献11

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部