期刊文献+

求解函数优化的新型差异演化算法 被引量:3

Novel differential evolution algorithm for function optimization
下载PDF
导出
摘要 针对差异演化算法存在早熟收敛和后期求解效率低的缺点,提出一种新型差异演化算法。该算法基于单种群,在演化过程中直接对当前种群进行变异、交叉和选择操作,无须差异演化算法中的中间过渡种群。此外,新型差异演化算法的变异与交叉概率是时变的,其中变异概率随着迭代次数的增加而减小;交叉概率随着迭代次数的增加而增加。对几个典型的测试函数进行仿真实验表明,该算法能够有效避免早熟收敛,改善了差异演化算法的优化性能。 This paper proposed a novel differential evolution algorithm to overcome the premature convergence and slow convergent speed during the late evolution in differential evolution algorithm. The new algorithm was based on single population without intermediate population, in which mutation operation, crossover operation and selection operation were used on the current population. In addition, the parameters of mutation and crossover in the new DE were time-varying. The probability of mutation decreased with the evolution, while the probability of crossover was increasing. Results of several typical benchmark functions show the algorithm can avoid premature convergence and improve the performance of differential evolution algorithm in optimization.
出处 《计算机应用研究》 CSCD 北大核心 2009年第6期2047-2049,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(70771037) 江西省教育厅科技项目(GJJ09347)
关键词 函数优化 差异演化 单种群 时变变异 时变交叉 function optimization differential evolution single population time varying mutation time varying crossover
  • 相关文献

参考文献9

  • 1STORN R,PRICE K. Minimizing the real functions of the ICEC'96 contest by differential evolution [ C ]//Proc of IEEE Conference on Evolutionary Computation. [ S. l. ] : IEEE Press, 1996:842-844.
  • 2STORN R, PRICE K. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces [ J ] Journal of Global Optimization, 1997,11 (4) : 341-359.
  • 3STORN R. Designing nonstandard filters with differential evolution [ J]. IEEE Signal Processing Magazine ,2005,22 ( 1 ) : 103-106.
  • 4CHEN Chong-wei, CHEN De-zhao, CAO Guang-zhi. An improved differential evolution algorithm in training and encoding prior knowledge into feedforward networks with application in chemistry [ J]. Chemo Metrics and Intelligent Laboratory Systems,2002,64( 1 ) :27-43.
  • 5PATERLINIA S, KRINK T. Differential evolution and particle swarm optimization in partitional clustering[ J ]. Computational Statistics & Data Analysis ,2006,50 ( 5 ) : 1220-1247.
  • 6CHIOU J P,WANG Feng-sheng. A hybrid method of differential evolution with application to optimal control problems of a bioprocess system[ C]//Proc of International Conference on Evolutionary Computation. 1998:627-632.
  • 7LIU Jun-hong, LAMPINEN J. A fuzzy adaptive differential evolution algorithm [ C ]//Proc of the 10th IEEE Region Conference on Computers, Communications, Control and Power Engineering. 2002 : 606- 611.
  • 8HENDTLASS T. A combined swarm differential evolution algorithm for optimization problems [C]//Proc of the 14th International Conference on Industrialand Engineering Applications of Artificial Intelligence and Expert Systems: Engineering of Intelligent Systems. London: Springer-Verlag,2001 : 11-18.
  • 9何宏,钱锋.一种新的种群数自适应遗传算法[J].计算机应用研究,2006,23(10):30-32. 被引量:7

二级参考文献4

  • 1C Fernandes,A Rosa.A Study on Non-random Mating and Varying Population Size in Genetic Algorithms Using Royal Road Function[C].Seoul:Proc.of the Congress on Evolutionary Computation,IEEE Press Piscataway,2001.60-66.
  • 2J Arabas,Z Michalewicz,J Mulawka.GAVaPS:A Genetic Algorithm with Varying Population Size[C].Proc.of the 1st IEEE Conf.on Evo-lutionary Computation,Piscataway:IEEE Press,1994.73-78.
  • 3T Back,A E Eiben,N A L Van der Vaart.An Empirical Study on GAs "without Parameters"[C].Proceedings of the 6th Conference on Parallel Problem Solving from Nature,Number 1917 in Lecture Notes in Computer Science,Berlin:Springer,2000.315-324.
  • 4吴浩扬,朱长纯,常炳国,刘君华.基于种群过早收敛程度定量分析的改进自适应遗传算法[J].西安交通大学学报,1999,33(11):27-30. 被引量:75

共引文献6

同被引文献21

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部