期刊文献+

基于谱方法的无向赋权图剖分算法 被引量:5

Spectral-based weighted undirected graph partitioning algorithm
下载PDF
导出
摘要 在多水平方法初始剖分阶段提出了一种基于谱方法的无向赋权图剖分算法SPWUG,给出了基于Lanc-zos迭代计算Laplacian矩阵次小特征值及特征向量的实现细节。SPWUG算法借助Laplacian矩阵次小特征值对应的特征向量,刻画了节点间相对距离,将基于非赋权无向图的Laplacian谱理论在图的剖分应用方面扩展到无向赋权图上,实现了对最小图的初始剖分。基于ISPD98电路测试基准的实验表明,SPWUG算法取得了一定性能的改进。实验分析反映了在多水平方法中,最小图上的全局近似最优剖分可能是初始图的局部最优剖分,需要加强优化阶段的迁移优化算法逃离局部最优的能力。 During the initial partitioning phase of multilevel method, this paper proposed the algorithm of spectral partitioning for weighted undirected graph (SPWUG) and gave the Fiedler vector calculation of Laplacian matrix using the Lanczos iteration method. The components of the Fiedler vector were weighted on the corresponding vertices of graph such that differences of the components provide information about the distances between the vertices. According to the distances, the SPWUG algorithm computed the initial partition of the coarsest graph by extending the Laplacian spectral graph theory from the unweighted undirected graph into the weighted undirected graph. The experimental evaluations show that the SPWUG algorithm produces the performance improvement. Meanwhile, the analysis shows that the approximate global minimum partition of the coarsest graph may be the local minimum partition of the finest graph and need to strengthen the global search ability of refinement algorithm in the refinement phase.
出处 《计算机应用研究》 CSCD 北大核心 2009年第6期2086-2089,共4页 Application Research of Computers
基金 科技部国际合作项目(CB7-2-01) 上海市教育委员会科研创新资助项目(08YZ13) 江西省教育厅科学技术研究项目(GJJ09590)
关键词 多水平方法 剖分 无向赋权图 谱方法 multilevel method partitioning weighted undirected graph spectral method
  • 相关文献

参考文献14

  • 1KERNIGHAN B W,LIN S. An efficient heuristic procedure for partitioning graphs[ J ]. Bell System Technical Journal, 1970,49 ( 1 ) : 291-307.
  • 2FIDUCCIA C, MATrHEYSES R. A linear-time heuristics for improving network partitions[ C]//Proc of the 19th Conference on Design Automation. Piscataway : IEEE Press, 1982 : 175-181.
  • 3LENG Ming, YU Song-nian. An effective muhi-level algorithm for bisecting graph [ C ]//Proc of the 2nd International Conference on Advanced Data Mining and Applications. Berlin : Springer, 2006 : 493- 500.
  • 4LENG Ming,YU Song-nian. An effective muhi-level algorithm based on ant colony optimization for bisecting graph [ C ]//Proc of the 11th Pacific Asia Conference on Knowledge Discovery and Data Mining. Berlin :Springer ,2007 : 138-149.
  • 5SUN Ling-yu, LENG Ming. An effective refinement algorithm based on swarm intelligence for graph bipartitioning[ C ]//Proe of International Symposium on Combinatorics, Algorithms, Probabilistic and Experimental Methodologies. Berlin : Springer,2007:60-69.
  • 6SUN Ling-yu, LENG Ming. An effective multi-level algorithm based on genetic algorithm for bisecting graph [ J ]. Journal of Computational Information Systems,2008,4 ( 4 ) : 1347 -1354.
  • 7PAIGE C C. Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem [ J ]. Linear Algebra Appl, 1980 ( 34 ) : 235 -258.
  • 8POTHEN A, SIMON H. Towards a fast implementation of spectral nested dissection [ C ]//Proc of ACM/IEEE Conference on Super Computing. Berlin : Springer, 1992 : 42 -51.
  • 9BARNARD S T,SIMON H D. A fast multilevel implementation of recursive spectral bisection for partitioning unstructed problems[ C ]// Proc of the 6th SIAM Conference on Parallel Processing for Scientific Computing. Philadelphia : SIAM, 1993:711-718.
  • 10DONGARRA J, FOX G, KENNEDY K,et al. Sourcebook of parallel computing[ M ]. San Francisco: Morgan Kaufmann Publishers,2003.

同被引文献56

  • 1Karypis G,Aggarwal R,Kumar V, et al.Multilevel hyper- graph partitioning: applications in VLSI domain[C]//Proc 34th Design Automation Conference, 1998:526-529.
  • 2Lengauer T.Combinatorial algorithms for integrated cir- cuit layout[M].[S.1.]:Wiley-Teubner, 1990: 124-155.
  • 3Alpert C J,Kahng A B.Recent directions in netlist parti- tioning, integration[J].The VLSI Journal, 1995,19.
  • 4Kemighan B W.Lin S.An efficient heuristic procedure for partitioning graphs[J].Bell System Technical Journal, 1970,49: 291-307.
  • 5Fiduccia C, Mattheyses R.A linear-time heuristics for improving network partitions[C]//Proc 19th Design Au- tomation Conf, 1982: 175-181.
  • 6Pilkington J, Baden S.Partitioning with space filling curves[R].California: University of Califomia, 1994.
  • 7Dongarra J, Fox G, Kennedy K, et al.Sourcebook of parallel computing[M].[S.1.] : Elsevier Science, 2003 : 182-219.
  • 8Karypis G, Kumar V.A fast and high quality multilevel scheme for partitioning irregular graphs[J].Siam Jour- nal on Scientific Computing, 1998,20(1):359-392.
  • 9Soufiane R.Hypergraph cuts & unsupervised representa- tion for image segmentation[J].Fundamenta Informati- cae, 2009,96:153-179.
  • 10Karypis G, Aggarwal R, Kumar V, et al.Multilevel hy- pergraph partitioning: applications in VLSI domain[J]. IEEE Transactions on Very Large Scale Integration Systems, 1999,7( 1 ) : 69-79.

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部