期刊文献+

(p,a)-sensitivek-匿名隐私保护模型 被引量:7

(p,a)-sensitive k-anonymity:privacy protection model
下载PDF
导出
摘要 提出了一种(p,a)-sensitivek-匿名模型,将敏感属性根据敏感度进行分组,然后给各分组设置不同的约束,并给出了(p,a)-sensitiveK-匿名算法。实验结果表明该方法可以明显地减少隐私泄露,增强了数据发布的安全性。 This paper proposed a novel model (p, a)-sensitive k-anonymity. It divided sensitive attributes into groups according to the sensitivity, and set each group with different restriction. Described the corresponding algorithm to implement the idea. The result of the experiments suggests that the new model is able to reduce privacy disclosure apparently and enforce security of data publishing.
作者 王茜 曾子平
出处 《计算机应用研究》 CSCD 北大核心 2009年第6期2177-2179,2183,共4页 Application Research of Computers
关键词 数据发布 敏感度 K-匿名 隐私泄露 分组 data publishing sensitivity k-anonymity privacy disclosure group
  • 相关文献

参考文献12

  • 1SWEENEY L. K-anonymity:a model for protecting privacy [ J]. International Joumal of Uncertainty, Fuzziness and Knowledge-Based Systems,2002,10 (5) :557-570.
  • 2MA CHANA V AJJHALA A, GEHRKE J, KIFER D , et al. L-diversity: privacy beyond k-anonymity [ C ]//Proc of the 22nd International Conference on Data Engineering. New York : ACM Press ,2006:24-35.
  • 3TRAIAN T M,BINDU V. Privacy protection:p-sensitive k-anonymity property[ C]//Proc of the 22nd International Conference on Data Engineering. New York : ACM Press ,2006:94.
  • 4WONG R C, LI Jin-yong, FU A W, et al. ( a, k ) -anonymity : an enhanced k-anonymity model for privacy preserving [ C ]//Proc of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York : ACM Press,2006 : 754-759.
  • 5LWUCHUKWU T, NAUGHTON J. K-anonymization as spatial indexing: toward scalable and incremental anonymization [ C ]//Proc of the 33rd International Conference on Very Large Data Bases. [ S. l. ] : VLDB Endowment,2007:746-757.
  • 6XIAO Xiao-kui, TAO Yu-fei. Anatomy:simple and effective privacy preservation[ C ]//Proc of the 32nd International Conference on Very Large Data Bases. [ S. l ] : VLDB Endowment,2006 : 139-150.
  • 7HETTICH S, BLAKE C L, MERZ C J. UCI repository of machine learning databases [ EB/OL]. ( 1998 ). http://www. ics. uci. edu/-mlearn/MLRepository, html.
  • 8BAYARDO R, AGRAWAL R. Data privacy through optimal k-anonymity[ C ]//Proc of the 21st International Conference on Data Engineering. Washington DC : IEEE Computer Society,2005:217-228.
  • 9LI Ning-hui, LI Tian-cheng, SURESH V. T-closeness: privacy beyond k-anonymity and L-diversity[ C ]//Proc of the 23rd International Conference on Data Engineering. 2007 : 106-115.
  • 10SWEENEY L. Achieving k-anonymity privacy protection using generalization and suppression[ J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 2002,10 ( 5 ) : 571- 588.

同被引文献58

  • 1戢渼钧.关于个性化信息服务的隐私保护[J].图书情报工作,2006,50(2):49-51. 被引量:20
  • 2杨晓春,刘向宇,王斌,于戈.支持多约束的K-匿名化方法[J].软件学报,2006,17(5):1222-1231. 被引量:60
  • 3SWEENEY L. k-Anonymity: A model for protecting privacy [J]. International Journal on Uncertainty, Fuzziness, and Knowledge-Based Systems, 2002, 10(5): 557-570.
  • 4TRAIAN T M, BINDU V. Privacy protection: p-sensitive k-anonymity property [ C ]// Proceedings of the 22nd International Conference on Data Engineering. New York: ACM, 2006:94 - 106.
  • 5AGGARWAI, C C, YU P S. A condensation approach to privacy preserving data mining [ C ]// EDBT'04: the 9th International Con- ference on Extending Database Technology, LNCS 2992. Berlin: Sprlnger-Verlag, 2004:183 - 199.
  • 6MACHANAVAJJHALA A, GEHRKE J, KEFER D. l-diversity: Privacy beyond k-anonymity [ C ]// ICDE 2006: Proceedings of the 22nd International Conference on Data Engineering. Atlanta, Georgia: ACM, 2006:24-35.
  • 7LI NINGHUI, LI TIANCHENG, VENKATASUBRAMANIAN S. t-Closeness: Privacy beyond k-anonymity and l-diversity [ C ]// ICDE'07: the 23rd International Conference on Data Engineering. Istanbul, Turkey: IEEE Computer Society, 2007:106-115.
  • 8XIAO XIAOKUI, TAO YUFEI. Personalized privacy preservation [C]// SIGMOD'06: the 25th ACM SIGMOD International Conference on ACM Management of Data. Chleago, Illinois, USA: ACM, 2006:229-240.
  • 9BUDANITSKY A, GRAEME H. Evaluating WordNet based measures of semantic distance [ J ]. Comutational Linguistics, 2006, 32 (1): 13-47.
  • 10Latanya Sweeney. k-anonymity : A model for protecting privacy [ J ]. In- ternational Journal of Uncertainty, Fuzziness and Knowlege-Based Sys- tems,2002,10 ( 5 ) :557 - 570.

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部