期刊文献+

网络答疑本体的生成与匹配方法研究

Study on generation and match of question answering ontology
下载PDF
导出
摘要 针对网络答疑具体任务,提出答疑本体概念,构建答疑本体,并提出一种基于答疑本体的答案匹配方法和相似度计算公式。公式不仅考虑词之间的相似度,还考虑问题答案对(QAp)在本体中的位置。该位置信息隐含了句子结构上的语义和词的语义扩展。实验结果表明提出的答疑本体能够有效表示QAp,易于答疑系统的检索匹配。 Aiming at the requirements and traits of question answering systems, designed a structure of question answering ontology, which was the representation of natural language questions, and provided a well retrieval mechanism. Meanwhile, proposed an approach of ontology acquisition, which could decrease the costs of development manually. Finally, proposed formula in order to computer semantic similarity between sentences basing on question answering ontology. Now, the proposed ontology has already been implemented and applied in the natural language oriented Web answer system ( NL-WAS), it shows that the question answering ontology can improve the result of the question search of NL-WAS system effectively.
出处 《计算机应用研究》 CSCD 北大核心 2009年第6期2288-2290,2318,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60473136) 国家"十一五"科技支撑计划资助项目(2006BAK11B02)
关键词 网络答疑系统 答疑本体 语义匹配 Web question answering system question answering ontology semantic match
  • 相关文献

参考文献13

二级参考文献115

  • 1张素娟,郑庆华,胡云华,孙霞.一种面向网络答疑的汉语切分歧义消除算法[J].计算机工程与应用,2004,40(25):55-58. 被引量:4
  • 2倪天倪,冯钧,孟朝晖.一种基于关系型知识构造的高效推理平台[J].小型微型计算机系统,1994,15(11):40-45. 被引量:4
  • 3吴胜远.一种汉语分词方法[J].计算机研究与发展,1996,33(4):306-311. 被引量:49
  • 4黄萱菁,吴立德,王文欣,叶丹瑾.基于机器学习的无需人工编制词典的切词系统[J].模式识别与人工智能,1996,9(4):297-303. 被引量:24
  • 5Ferret O, Grau B, Hurault-Plantet M et al. Exploiting lexical expansions and boolean compositions for web querying[C]. Proceedings of the ACL workshop on Recent Advances in Natural Language Processing and Information Retrieval, Hong Kong,2000:13-21.
  • 6Sun Gwan Han, Youn Gi Kim. Intelligent dialogue system for plane euclidean geometry learning[Z]. COEX Conference Center, 2001.11.
  • 7G. V. Cormack. Fast automatic passage ranking (multitext experiments for TREC-8). The 8th Text Retrieval Conf. (TREC8), Gaithersburg, MD, 2000.
  • 8William A. Woods. Linguistic knowledge can improve information retrieval. The 6th Annual Applied Natural Language Processing Conf., Washington, 2000.
  • 9Information Mapping Project. http://www-csli.stanford.edu/semlab/infomap. html, 2003.
  • 10W. A. Woods, Stephen Green. Halfway to question answering.The 9th Text Retrieval Conf. (TREC 9), Gaithersburg, MD,2000.

共引文献405

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部