期刊文献+

基于复杂网络社团划分的Web services聚类 被引量:1

Web services clustering based on detecting community structure in complex network
下载PDF
导出
摘要 以单词为网络节点,由自然语言描述中单词的同现频率确定单词间的相关度并作为边的权值,构建自然语言描述集合的加权单词网络模型。利用Newman快速算法对加权单词网络模型进行社团划分,得到单词聚类结果;根据单词聚类结果与服务之间的映射关系实现服务聚类。实验结果与手工分类结果的对比表明,平均查准率达74.7%以上。 This paper described an algorithm which created WWN of service descriptions. The nodes was words, and WWN got the edge-weight through the word's co-appearance. Newman fast algorithm could detect community structure in WWN and return the clusters of words. Using the relationship between words and services, achieved service-clustering. At last, an experiment on a collection of 1 007 Web services shows the high precision of 74.7%
出处 《计算机应用研究》 CSCD 北大核心 2009年第6期2299-2302,共4页 Application Research of Computers
基金 国家“973”重点基础研究资助项目(2007CB310800) 国家自然科学基金资助项目(60675032)
关键词 WEB服务 聚类 复杂网络 社团划分 文本聚类 Web services clustering complex networks community structure detecting documents clustering
  • 相关文献

参考文献15

  • 1DAML services home[ EB/OL]. (2006-03). http://www.daml. org/services/owl-s/.
  • 2HAN Jia-wei, KAMBER M. Data mining concepts and techniques [ M]. Beijing: China Machine Press, 2001:335- 336.
  • 3RAGHAVAN V V,WONG S K M. A critical analysis of vector space model for information retrieval[J]. Journal of the American Society for Information Science, 1986,37(5) :279-287.
  • 4MacQUEEN J B. Some methods for classification and analysis of multivariate observations [ C ]//Proc of the 5th Berkeley Symposium on Math Statist Prob. Berkley.: university of California Press, 1967 : 281 - 297.
  • 5HNNEBURG A, KEIM D A. An efficient approach to clustering in large multimedia databases with noise [ C ]//Proc of the 4th International Conference on Knowledge Discovery and Data Mining. New York : AAAI Press, 1998:58- 65.
  • 6HINNEBURG A. Density-based clustering in large databases using projections and visualizations [ D ]. Konstanz: University of Konstanz, 2002
  • 7GEORGE K, HAN E H, KUMAR V. CHAMELEON: a hierarchical clustering algorithm using dynamic modeling [ J]. IEEE Computer, 1999,27(3 ) :329- 341.
  • 8SLONIM N, TISHIBY N. Document clustering using word clusters via the information bottleneck method [ C ]//Proc of the 23rd Conference on Research and Development in Information Retrieval. New York: ACM Press, 2000:208-215.
  • 9CANCHO F I, SOLE R V. The small world of human language[J]. Proc of the Roy Society of London:Biological Science, 2001, 268 (1482) :2261 - 2265.
  • 10MATSUO Y, OHSAWA Y, ISHIZUKA M. A document as a small world[ M]. Berlin:Springer, 2001:444-448.

同被引文献9

  • 1况夯,罗军.基于遗传FCM算法的文本聚类[J].计算机应用,2009,29(2):558-560. 被引量:5
  • 2彭京,杨冬青,唐世渭,付艳,蒋汉奎.一种基于语义内积空间模型的文本聚类算法[J].计算机学报,2007,30(8):1354-1363. 被引量:44
  • 3PangningTan,SteinbachM,KumarV数据挖掘导论[M].北京:人民邮电出版社,2006:305-347.
  • 4Luo Congnan,Li Yanjun,Soon M Chung.Text document clustering based on neighbors [J]. Data & Knowledge Engineering, 2009,68(11):1271-1288.
  • 5Newman M E J,Girvan M.Finding and evaluating community structure in networks[J]. Phys Rev E,2004,69,026113.
  • 6Chen D B,Fu Y, Shang M S.A fast and efficient heuristic algorithm for detecting community structures in complex networks [J].Physica A,2009,388:2741-2749.
  • 7Wan Xiaojun.A novel document similarity measure based on earth mover's distance[J].Information Science,2007,177:3718-3730.
  • 8Lewis D D. Reuters-21578 text categorization collection [EB/ OL]. http://kdd.ics.uci.edu/databases/reuters21578,1999.
  • 9Rijsbergen C J. Information retrieval [Z]. 2nd ed. Buttersworth, London, 1979.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部