期刊文献+

纤维体积分数可变的复合材料梁计及转动惯量和剪切变形时的固有频率

Natural Frequencies of Composite Beams Having Variable Fiber Volume Fraction Including Rotary Inertia and Shear Deformation
下载PDF
导出
摘要 研究纤维体积分数沿着厚度可变的对称复合材料梁的振动.分析中考虑了一阶剪切变形和转动惯量.该解法可适应任意边界条件.纤维体积分数沿着梁的厚度方向以坐标的m幂次多项式形式连续渐变.可变的纤维体积分数,在对称复合材料梁中形成功能梯度材料(FGM),会引起梁的某些振动特性的改变.结果显示,剪切变形、纤维体积分数和边界条件,对复合材料梁的固有频率和振型的影响. The vibration analysis of symmetrically composite beams having a variable fiber volume fraction through the thickness was concerned with. Fast-order shear deformation and rotary inertia were included in the analysis. The solution procedure is applicable to arbitrary boundary conditions. Continuous gradation of the fiber volume fraction is modelled in the form of an m th power polynomi- al of the coordinate axis in thickness direction of the beam. By varying the fiber volume fraction within the symmetric composite beam to create a functionally graded material (FGM), certain vibration characteristics can be affected. Restflts have been presented to demonstrate the effect of shear deformation,fiber volume fraction and boundary conditions on the natural frequencies and mode shapes of composite beams.
出处 《应用数学和力学》 CSCD 北大核心 2009年第6期667-676,共10页 Applied Mathematics and Mechanics
关键词 自由振动 功能梯度材料 一阶剪切变形理论 free vibration functionally graded materials first-order shear deformation theory
  • 相关文献

参考文献18

  • 1Zinenkiewicz O C,Taylor R L. The Finite Element Method[M] .Vol 1. Singapore:McGraw-Hill, 1989.
  • 2Miller A K, Adams D F. An analytic means of determining the flexural and torsional resonant frequencies of generally orthotropic beams[ J ]. Journal of Sound and Vibration, 1975,41( 4 ) :433-439.
  • 3Vinson J R, Sierakowski R L. The Behavior of Structures Composed of Composite Materials [ M ] . Dordrecht, The Netherlands:Martinus Nijhoff, 1986,141.
  • 4Timoshenko S P. On the correction for shear of differential equation for transverse vibration of prismatic bars[J]. Philos Mag Ser 6,1921,41(245) :744-746.
  • 5Timoshenko S P. On the transverse vibration of bars of uniform cross-section[ J]. Philos Mag Ser 6, 1922,43: 125-131.
  • 6Teoh L S, Huang C C. The vibration of beams of fiber reinforced material[ J]. Journal of Sound and Vibration, 1977,51(4 ) : 467-473.
  • 7Sankar B V. An elasticity solution for functionally graded beams[ J]. Composite Science and Technology ,2001,61(5) :689-696.
  • 8Sankar B V, Tzeng J T. Thermal stresses in functionally graded beams[J]. AIAA Journal,2002,48 (6) : 1228-1232.
  • 9Chakraborty A, Gopalakrishnan S, Reddy J N. A new beam finite element for the analysis of functionally graded materials[ J]. International Journal of Mechanical Sciences ,2003,45(3) :519-539.
  • 10Martin A F, Leissa A W. Application of the Ritz method to plane elasticity problems for composite sheets with variable fibre spacing[ J]. International Journal for Numerical Methods in Engineering, 1989,28(8) : 1813-1825.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部