期刊文献+

求解非线性不适定的混合Newton-Tikhonov迭代法

A Mixed Newton-Tikhonov Method for Nonlinear Ill-Posed Problems
下载PDF
导出
摘要 鉴于Newton型方法在实际计算中计算量可能非常大,因此提出了一种一步Newton结合若干步简化Newton的混合Newton-Tikhonov方法,并且在一定条件下证明了该方法的收敛性和稳定性.数值试验表明,在减少计算量方面该方法相对于经典的Newton方法有明显的改善. Newton type methods are one kind of the efficient methods to solve nonlinear ill-posed problems and attract extensive attention of people. However, the computational cost of Newton type methods may be very large because of the complexity of practical problems. A mixed Newton- Tikhonov method,i, e. ,one step Newton-Tikhonov method with several other steps of simplified Newton-Tikhonov method was proposed. The convergence and stability of this method were proved under some conditions. Numerical experiments show that the new method has obvious improvement over the classical Newton method in the reduction of the computational cost.
机构地区 上海大学数学系
出处 《应用数学和力学》 EI CSCD 北大核心 2009年第6期690-700,共11页 Applied Mathematics and Mechanics
基金 上海市重点学科资助项目(S30104) 上海市教委重点学科建设资助项目(J50101)
关键词 非线性不适定问题 热传导反问题 混合Newton-Tikhonov方法 收敛性 稳定性 nonlinear ill-posed problem inverse heat conduction problem mixed Newton-Tikhonov method convergence stability
  • 相关文献

参考文献10

  • 1Hanke M.A regularization Levenberg-Marquardt scheme, with application to inverse groundwater filtration problems[J]. Inverse Problems, 1997,13( 1 ) : 79-95.
  • 2Engl H W, Hanke M, Neubauer A. Regularization of Inverse Problem [ M]. Dordrecht: Kluwer Academic, 1995.
  • 3Bakushinskii A B, Kokurin M Y. Iterative Methods for Approximate Solution of Inverse Problems [ M]. Dordrecht: Springer, 2004.
  • 4Kaltenbacher B, Neubauer A, Schemer O. Iterative Regularization Methods for Nonlinear Ill-Posed Problems[M] .Walter de Gruyter,2008.
  • 5Jin Q N. On the iteratively regularized Gauss-Newton method for solving nonlinear ill-posed problems [ J]. Math Comp, 2000,69(232) : 1503-1623.
  • 6Jin Q N.A convergence analysis of the iteratively regularized Gauss-Newton method under the lipschitz condition[ J]. Inverse Problems ,2008,24(4) : 1-16.
  • 7Hanke M, Neubauer A, Schemer O. A convergerce analysis of the Landweber iteration for nonlinear ill-posed problems[J]. Numerical Mathematics, 1995,72( 11 ) : 21-37.
  • 8Deuflhard P, Engl H W, Scherzer O. A convergence analysis of iterative methods for the solution of nonlinear ill-posed problems under affinely invariant conditions[ J]. Inverse Problems, 1998,14(5 ) : 1081-1106.
  • 9Deuflhard P. Newton Method for Nonlinear Problems : Affine Invariance and Adaptive Algorithms [ M ]. Berlin Heidelberg: Springer- Verlag, 2004.
  • 10贺国强,孟泽红.求解热传导反问题的一种正则化Newton型迭代法[J].应用数学和力学,2007,28(4):479-486. 被引量:4

二级参考文献2

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部