期刊文献+

基于BP神经网络和遗传算法的刚挠背板设计 被引量:1

Anti-vibration design of rigid-flex backplane based on BP neural network and genetic algorithm
下载PDF
导出
摘要 选取加强筋宽度等5个关键因素,采用正交设计法采集刚挠背板基频形成训练样本。由试验确定BP神经网络拓扑结构。选用LM算法训练的BP神经网络(BPNN)作为遗传算法目标函数求解器,用于优化抗振结构。结果表明,网络拓扑结构为4-6-1时网络泛化能力强,测试误差小于1.6%;获得最优结构参数组合x1~x5分别为0.0039,0.004,0.0268,0.0242和0.0018m;优化后,基频提高92.7%,振幅降低82.77%,计算误差为0.636%。 In this study, stiffening width and other four parameters were selected as key factors. Training samples were generated based on the fundamental frequency of rigid-flex backplane collected using orthogonal design method. The topological structure of neural network was determined via testing. To optimize the anti-vibration structure, the back propagation neural networks (BPNN), trained by Levenberg-Marquardt (LM) algorithm, was used as the objective function solver for genetic algorithm (GA). The results indicate that, when the topological structure of neural network is in the state of 4-6-1, the network generalization capability is large and the testing error is less than 1.6%; The key factors x1 to x5 for the optimal anti-vibration structure are 0.003 9, 0.004 0.026 8, 0.024 2 and 0.001 8 m respectively; After optimization, the fundamental frequency increases by 92.7% and the resonant amplitude decreases by 82.77%, with a calculation error of 0.636%.
出处 《电子元件与材料》 CAS CSCD 北大核心 2009年第6期64-68,共5页 Electronic Components And Materials
基金 预研项目 广西研究生科研创新资助项目(No.200810590802M405)
关键词 刚挠背板 BP神经网络 遗传算法 抗震设计 rigid-flex backplane BP neural network genetic algorithm anti-vibration design
  • 相关文献

参考文献3

二级参考文献11

共引文献19

同被引文献7

  • 1杨伟,彭东林,朱革,陈锡侯.基于变耦合系数变压器原理的时栅位移传感器设计[J].仪器仪表学报,2006,27(11):1403-1405. 被引量:16
  • 2方开泰 马长兴.正交与均匀实验设计[M].北京:科学出版社,2001.144-152.
  • 3LAW R C ,CHEANG R,TAN Y W ,et al. Thermal performance predic- tion of QFN packages using artificial neural network (ANN). Interna- tional ElectronicMan - ufacturing. Technology, 2006 ( IEMT2006 ), 50 -54.
  • 4TSAI. Optimal laser - cutting parameters for QFN packages by utilizing artificial neural networks and genetic algorithm. Journal of Materials Processing Technology. 2008,1 - 14.
  • 5ANIJDAN S H M. Flow stress optimization for 304 stainless steel under cold and warm compression by artificial neural network and genetic al- gorithm. Mater Des ,2007,28 ( 2 ) :609 - 615.
  • 6雷英杰,张善文.MATLAB遗传算法工具箱.西安:西安电子科技大学出版社,2005.
  • 7郭海丁,路志峰.基于BP神经网络和遗传算法的结构优化设计[J].航空动力学报,2003,18(2):216-220. 被引量:51

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部