期刊文献+

Capsazepine抑制培养海马神经元网络线粒体转运(英文)

Capsazepine inhibits mitochondrial transport in cultured hippocampal neuronal networks of rat
下载PDF
导出
摘要 capsazepine(CZP)是辣椒素的合成类似物,也是野香草型瞬时感受器电位通道1(TRPV1)的选择性抑制剂。TRPV1在体内有广泛的表达谱,使CZP有广泛的作用位点。除此之外,以往的研究结果表明CZP除了作用于TRPV1外还有更复杂的信号通路。本课题研究了CZP对体外培养的大鼠海马神经元网络内线粒体转运的作用并分析其可能机制。结果显示:20μmol/L的CZP可有效抑制原代培养海马神经元网络中的线粒体转运。CZP急性作用不引起胞内钙离子浓度的升高,也不引起细胞的调亡。胞外更换为无外钙记录液,或者将GSK3β抑制剂SB415286与CZP共孵育,均不影响CZP对线粒体转运的抑制作用。然而,将BAPTA-AM与CZP共孵育,抑制了CZP对线粒体转运的抑制作用。本研究结果表明,CZP直接通过胞内钙信号通路影响神经元的线粒体转运,与胞外钙流或转运蛋白的磷酸化无关。 Capsazepine is a synthetic analogue of eapsaicin and a selective inhibitor of transient receptor potential vanilloid 1 channel (TRPV1). TRPVI has wide expression profile, providing extensive targets for capsazepine. Evidence from previous studies showed that capsazepine acted more complex effects through other than TRPV1 signal pathway. In this study, we examined its effect and underlying mechanisms on mitoehondrial transport of cultured hippocampal neurons in rats. The data showed that the number of the moving mitochondria in primarily cultured hippocampal neurons was remarkably decreased by 20 μmol/L capsazepine. Contradicted to previous study, the intracellular calcium concentration was not elevated. Capsazepine did not induce cell death in acute incubation. The inhibitory effect of capsazepine was not prevented by co-application of SB415286, the inhibitor of GSK313 or by replacing extracellular recording solution to calcium-free saline, but prevented by co-application of BAPTA-AM. These results indicated that eapsazepine inhibited mitochondrial transport in hippocampal neurons through intracellular calcium signal pathways, with no involvement of extracellular calcium influx or transport protein phosphorylation.
出处 《神经解剖学杂志》 CAS CSCD 北大核心 2009年第3期239-243,共5页 Chinese Journal of Neuroanatomy
基金 清华裕元医学基金(20240000513) 国家重点基础研究发展规划(973项目,2005CB522503)资助项目
关键词 CAPSAZEPINE TRPV1激动剂 线粒体转运 胞内钙 海马 大鼠 capsazepine, TRPV1 antagonist, mitochondrial transport, intracellular calcium, hippocampus, rat
  • 相关文献

参考文献19

  • 1Kann O, Kovacs R. Mitochondria and neuronal activity. Am J Physiol Cell Physiol, 2007 ;292:641 - 657
  • 2Li Z, Okamoto K, Hayashi Y et al. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell, 2004;119:873-887
  • 3Chang DT, Honick AS, Reynolds IJ. Mitochondrial trafficking to synapses in cultured primary cortical neurons. J Neurosci, 2006; 26:7035 - 7045
  • 4Reeve AK, Krishnan KJ, Tumbull DM. Age related mitochondrial degenerative disorders in humans. Biotechnol J, 2008 ; 3 : 750 - 756
  • 5Sehapira AH. Mitochondrial involvement in Parkinson' s disease, Huntington's disease, hereditary spastic paraplegia and Friedreich's ataxia. Biochim Biophys Acta, 1999 ; 1410 : 159 - 170
  • 6Shao L, Martin MV, Watson SJ et al. Mitochondrial involvement in psychiatric disorders. Ann Med, 2008 ;40:281 - 295
  • 7Walpole CS, Bevan S, Bovennann G et al. The discovery of capsazepine, the first competitive antagonist of the sensory neuron excitants capsaicin and resiniferatoxin. J Med Chem, 1994;37:1942 - 1954
  • 8Zhang L, Barritt GJ. Evidence that TRPM8 is an androgen-dependent Ca^2+ channel required for the survival of prostate cancer ceils. Cancer Res, 2004 ;64:8365 - 8373
  • 9Teng HP, Huang C J, Yeh JH et al. Capsazepine elevates intracel- lular Ca^2 + in human osteosarcoma cells, questioning its selectivity as a vanilloid receptor antagonist. Life Sci, 2004 ;75:2515 -2526
  • 10Gill CH, Randall A, Bates SA et al. Characterization of the human HCN1 channel and its inhibition by capsazepine. Br J Pharmacol, 2004 ; 143:411 -421

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部