期刊文献+

工作参数对平面直流磁控溅射放电特性的影响 被引量:2

Influence of operating parameters on discharge characteristics of planar DC magnetron
下载PDF
导出
摘要 基于OOPIC软件,对平面直流磁控溅射放电等离子体进行了二维自洽粒子模拟,重点研究了磁场、阴极电势和气压等工作参数对磁控放电特性的影响。模拟发现,在一定的工作参数范围内,随着磁场的增强,鞘层厚度变窄,鞘层电势降减小,阴极离子密度增大,但是分布变窄;随着阴极电势的增加,鞘层厚度稍微变窄,鞘层电势降增大,阴极离子密度增大,分布变宽;随着气压的升高,鞘层厚度基本不变,鞘层电势降会增大,阴极离子密度先增大后减小,分布略微变宽。 A 2D self-consistent PIC/MCC software OOPIC is used to simulate the plasma properties in the planar de magnetron sputtering system, and then the influence of parameters such as the magnetic field, cathode voltage and gas pressure on the discharge characteristics is discussed. The results show that, in a definite range of operation parameters, the sheath thickness becomes narrower and the sheath potential fall (SPF) reduces, the ion density on the cathode (IDOTC) increases but its distribution becomes narrower as the magnetic field is strengthened; , the sheath thickness becomes a little narrower and SPF increases, IDOTC increases and the distribution becomes wider as the increase of cathode voltage; the sheath thickness keeps constant almost and SPF increases, IDOTC increases firstly and then decreases, the distribution becomes a little wider as the increase of gas pressure.
出处 《核聚变与等离子体物理》 CAS CSCD 北大核心 2009年第2期182-188,共7页 Nuclear Fusion and Plasma Physics
关键词 磁控溅射 放电 等离子体 粒子模拟 OOPIC Magnetron sputtering Discharge Plasma Particle simulation OOPIC
  • 相关文献

参考文献20

  • 1Pekker L. Longitudinal distribution of plasma density in the low-pressure glow discharge with transverse magnetic field [J]. Plasma Sources Sci. Techn., 1995, 4: 31-35.
  • 2Birdsall C K, Langdon A B. Plasma physics computer simulation [M]. New York: McGraw-Hill, 1985.
  • 3Nanbu K, Segawa S, Kondo S. Self-consistent particle simulation of three-dimension dc magnctron discharge [J]. Vacuum, 1996, 47: 1013-1016.
  • 4Nanbu K, Kondo S. Analysis of three-dimensional dc magnetron discharge by the partial-in-cell/Monte Carlo method [J]. Jpn. J. Appl. Phys. Part 1, 1997, 36 (7B): 4808--4813.
  • 5Kondo S, Nanbu K. A self-consistent numerical analysis of a planar dc magnetron discharge by the particle- in-cell/Monte Carlo method [J]. J. Phys. D: Appl. Phys., 1999, 32: 1142-1152.
  • 6Kondo S, Nanbu K. Axisymmetrical particle-in-cell/ Monte Carlo simulation of narrow gap planar magnetron plasmas. I. Direct current-driven discharge [J]. J. Vae. Sei. Techn. A, 2001, 19(3): 830-837.
  • 7Shon C H, Lee J K,Lee H J, et al. Velocity distributions in magnetron sputter [J]. IEEE transactions on plasma science, 1998, 26(6): 1635-1644.
  • 8Shon C H, Park J S, Kang B K, et al. Kinetic and steady-state properties of magnetron sputter with three- dimensional magnetic field [J]. Jpn. J. Appl. Phys., 1999, 38: 4440-4449.
  • 9Kolev I, Bogaerts A. Numerical models of the planar magnetron glow discharges [J]. Contrib. Plasma Phys., 2004, 44(7-8): 582-588.
  • 10Kolev I, Bogaerts A, Gijbels R. Influence of electron recapture by the cathode upon the discharge characteristics in dc planar magnetrons [J]. Phys. Rev. E, 2005, 72: 056402-1-11.

二级参考文献60

  • 1Yang W B, Fan S H, Ma P N, Zhang G L Zhang S Z and Du J 2005 Acta Phys. Sin. 54 4944 .
  • 2Li Y P, Liu Z T, Zhao H L, Liu W T and Yan F 2007 Acta Phys. Sin. 56 2937 .
  • 3Window B 1995 Surf. Coat. Tech. 71 93.
  • 4Kelly P J and Arnell R D 2000 Vacuum 56 159.
  • 5Gu L and Lieberman M A 1988 J. Vac.Sci. Technol A 6 2960.
  • 6Wendit A E, Lieberman M A and Meuth H 1988 J. Vac. Sci. Technol A 6 1827.
  • 7Kwon U H, Choi S H, Park Y H and Lee W J 2005 Thin Solid Films 475 17.
  • 8Bradley J W, Arnell R D and Armour D G 1997 Surf. Coat. Tech. 97 538.
  • 9Costin C, Marques L, Popa G and Gousset G 2005 Plasma Sources Sci. Technol. 14 168.
  • 10Shon C H and Lee J K 2002 Appl. Surf. Sci. 192 258.

共引文献5

同被引文献13

  • 1Bradley J W, Welzel T. Physics and phenomena in pulsed magnetrons: an over- view[J]. Journal of Physics D: Applied Physics, 2009, 42(9): 093001.
  • 2Bradley J W, Karkari S K, Vetushka A. A study of the transient plasma potential in a pulsed bi-polar DC magnetron discharge[J]. Plasma Sources Science and Tech- nology, 2004, 13(2): 189.
  • 3Vetushka A, Karkari S K, Bradley J W. Two-dimensional spatial survey of the plasma potential and electric field in a pulsed bipolar magnetron discharge[J]. Journal of Vacuum Science & Technology A, 2004, 22(6): 2459.
  • 4Welzel T, Dunger T, Liebig B, et al. Spatial and temporal development of the plasma potential in differently configured pulsed magnetron discharges[J]. New Journal of Physics, 2008, 10: 123008.
  • 5Seo S H, In J H, Chang H Y. Time evolution of electron energy distribution function and plasma parameters in pulsed and unbalanced magnetron argon dis- charge[J]. Journal of Applied Physics, 2005, 98: 043301.
  • 6Seo S H, In J H, Chang H Y. Experimental investigation of plasma dynamics in dc and short-pulse magnetron discharges[J]. Plasma Sources Science and Technology, 2006, 15(2): 256.
  • 7Nanbu K, Kondo S. Analysis of three-dimensional dc magnetron discharge by the particle-in-cell/Monte Carlo method[J]. Japanese Journal of Applied Physics, Part 1, 1997, 36(7B): 4808.
  • 8Kondo S, Nanbu K. A self-consistent numerical analysis of a planar DC magnetron discharge by the particle-in-cell/Monte Carlo method[J]. Journal of Physics D: Ap- plied Physics, 1999, 32(10): 1142.
  • 9Shon C H, Lee J K. Modeling of magnetron sputtering plasmas[J]. Applied Surface Science, 2002, 192(1//2/3/4): 258.
  • 10Kolev I, Bogaerts A, Gijbels R. PIC-MCC numerical simulation of a DC planar magnetron[J]. Plasma Processes and Polymers, 2006, 3(2): 127,.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部