期刊文献+

饱和砂土局部变形带模拟的有限元数值实现 被引量:2

Finite element numerical implementation for simulation of deformation band in saturated sand
下载PDF
导出
摘要 基于有限变形理论,推导了Newton-Raphson迭代算法在k+1步增量表达的矩阵形式,实现了饱和砂土变形局部化的有限元数值计算,得到了饱和砂土发生局部化变形的准则。基于Galerkin方法,得到了位移场和应力场的空间离散化矩阵方程;由土体局部变形带的连续性条件,引入第1切线算子,推导出了砂土等颗粒状媒介发生局部化变形的必要条件。基于此核心算法,编制了有限元计算程序,模拟了饱和砂土在不排水条件下平面压缩过程中剪切带的形成与发展;通过比较分析,研究了有限元网格粗细对于土体局部变形带的影响,结果表明,网格粗细的病态依赖只是微小的,它只与变形条带的宽度有关,对于土体所表现出来的其他力学特性没有影响。 The matrix form of Newton-Raphson incremental solution at the k+1 iteration is updated based on the finite deformation theory, leading the finite element implementation to the simulation of the deformation band in the fluid-saturated sand, and the criteria for localized deformation under drained and undrained conditions are derived and utilized to detect instabilities. The spatial discretization of the displacements and the pressure fields are furnished by the classical Galerkin method; according to the continuity of tractions across the deformation band, the necessary condition for localization is obtained by introducing the first tangent operator. Based on the algebraic manipulation above, a finite element numerical computational program is coded by FORTRAN; and then numerical simulations on saturated sand under undrained condition is performed to study the onset and development of the shear band. Also, the mesh sensitivity is studied; and the results show that the pathological mesh dependence is mild, which is related to the apparent width of the shear band, while the different meshes display the same overall mechanical behavior.
出处 《岩土力学》 EI CAS CSCD 北大核心 2009年第6期1837-1842,共6页 Rock and Soil Mechanics
基金 中南大学优秀博士论文创新选题项目(No.77206) 铁道部科技司重点课题(No.2006G007-C) 美国国家科学基金项目(No.CMMI-0726908)
关键词 砂土 变形带 局部化 有限变形理论 网格 sand deformation band localization finite deformation theory mesh
  • 相关文献

参考文献15

  • 1ALSINY A, VARDOULAKIS I G. DRESCHER A. Deformation localization in cavity inaction experiments on dry sand[J]. Geotechnique, 1992, 42: 395--410.
  • 2张洪武,周雷,黄辉.含液各向异性多孔介质应变局部化分析[J].岩土力学,2004,25(5):675-680. 被引量:10
  • 3李元海,靖洪文,朱合华,上野胜利.基于图像相关分析的土体剪切带识别方法[J].岩土力学,2007,28(3):522-526. 被引量:30
  • 4ANAND L. Plane deformations of ideal granular materials[J]. Journal of the Mechanics and Physics of Solids, 1983, 31: 105--122.
  • 5ROSCOE K H, BURLAND J H. On the generalized stress-strain behavior of 'wet' clay[J]. Engineering Plasticity, 1968: 535--609.
  • 6LANDIS E N, NAGY E N, KEANE D T. Microstructure and fracture in three dimensions[J]. Engineering Fracture Mechanics, 2003, 70:911- 925.
  • 7DESRUES J, CHAMBON R, MOKNI M, et al. Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography[J]. Geotechnique, 1996, 46: 527--546.
  • 8WANG L B, FROST J D, LAI J S. Three dimensional digital representation of granular material microstructure from X-ray tomography imaging[J]. Journal of Computing in Civil Engineering, ASCE, 2004, 18: 28--35.
  • 9HILL R. A general theory of uniqueness and stability in elastic-plastic solids[J]. Journal of the Mechanics and Physics of Solids, 1958, 6: 236--249.
  • 10THOMAS T. Plastic flow and fracture in solids[M]. New York: Academic Press, 1961.

二级参考文献53

  • 1李元海,靖洪文,曾庆有.岩土工程数字照相量测软件系统研发与应用[J].岩石力学与工程学报,2006,25(z2):3859-3866. 被引量:63
  • 2李国琛,朱辰.剪切带状分叉[J].力学学报,1994,26(1):31-38. 被引量:5
  • 3Vermeer P A. A simple shear band analysis using compliances[A]. IUTAM Conference on Deformation and Failure of Granular Aterials[C]. Rotterdam: Balkema A A, 1982. 439-499.
  • 4Roscoe K H. The influence of strain in soil mechanics[J]. Geotechnique,1970, 20(2): 129-170.
  • 5Bardet J P. A comprehensive review of strain localization in elastoplasic soils[J]. Computers and Geotechnics, 1990, 10: 163-188.
  • 6Desrue J. La Localisation de La deformation dans les milieus granulaires[D]. Grenoble: These de doctorat detat, 1984.
  • 7Mandel J. Conditions de stabilite et postulate de Drucker[A]. IUTAM symposium on theoretical and applied mechanics[C]. Grenoble, 1964, 58-68.
  • 8Hill R. Acceleration waves in solids[J]. Journal of the Mechanics and Physics of Solids, 1962, 10: 1-16.
  • 9Rudnicki J W, Rice J R. Conditions for the localization of the deformation in pressure sensitive dilatant materials[J]. Journal of the Mechanics and Physics of Solids, 1975, 23: 371-394.
  • 10Vardoulakis I. Shear band inclination and shear modulus of sand in biaxial tests[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1980, 4: 103-119.

共引文献62

同被引文献29

  • 1李化云,张志强,王志杰,凌云鹏,张浩.浅埋大跨隧道预加固措施相似模型试验研究[J].岩土力学,2012,33(S2):133-138. 被引量:7
  • 2吉小明,吕纬.含水砂层隧道围岩失稳破坏机制及控制研究现状综述[J].岩土力学,2009,30(S2):291-296. 被引量:21
  • 3施成华,黄林冲.顶管施工隧道扰动区土体变形计算[J].中南大学学报(自然科学版),2005,36(2):323-328. 被引量:39
  • 4刘宝琛,张家生.近地表开挖引起的地表沉降的随机介质方法[J].岩石力学与工程学报,1995,14(4):289-296. 被引量:130
  • 5Borja R I, Tamagnini C. Critical state model at finite strains [ J ]. Proceedings of Engineering Mechanics, 1996, 1:148 - 151.
  • 6Drucker D C, Prager W. Extended limit design theorems for continuous media [ J ]. Quarterly of Applied Mathematics, 1952, 9:381 - 389.
  • 7Lade P V. Elasto plastic stress strain theory for cohesionless soil with curved yield surface [ J ]. International Journal of Soilds Structure, 1977,13 : 1019 - 1035.
  • 8Resende L, Martin J B. Fonnulation of drucker - prager cap model [J]. Journal of Engineering Mechanics, 1955, 111(7) :855-881.
  • 9Jefferies M G. Norsand: a simple critical state model for sand [J]. Geotechnique, 1993, 43(1):91-103.
  • 10Borja R I, Andrade J E. Critical state plasticity, Part VI: Meso - scale finite element simulation of strain localization in discrete granular materials [ J ]. Computer Methods in Applied Mechanics and Engineering, 2006, 195 ( 2 ) : 5115-5140.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部