期刊文献+

基于惩罚高斯混合模型的微阵列基因表达数据分析

Penalized Gaussian Mixture Model for the Analysis of Microarray Gene Expression Data
下载PDF
导出
摘要 随着现代生物技术的发展,基于基因表达数据的肿瘤分型诊断已成为DNA微阵列的重要应用领域。提出一种基于基因表达数据的肿瘤分型诊断新方法,并在理论上给出模型解释。该方法通过对高斯混合模型加上一个L1惩罚实现了肿瘤分类和信息基因选择的有机结合,从而用较少的变量达到更高的识别率。实验结果显示,无论是在模拟数据中还是五个微阵列数据集中,提出的方法都是高效稳定的。 The diagnosis of cancer type based on gene expression profile is an important application field of DNA microarrays. In this paper, A penalized Gaussian mixture model is proposed by an Lt penalty, which makes a good conjunction with cancer diagnosis and gene selection, achieve better accuracy by less variable deal. Some theoretic analysis is given for a simple but clear explanation about the model in detail. Simulate and real data examples show that the proposed method not only have high classification accuracy but also enjoy stable performance in various cases.
作者 石玉
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期1-7,共7页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(60575004)
关键词 微阵列数据 肿瘤诊断 基因选择 混合高斯模型 L1惩罚 Microarray Cancer diagnosis Gene selection Gaussian mixture model L1 penalty
  • 相关文献

参考文献17

  • 1SCHENA M.Microarray analysis[M].NJ:Wiley-Liss Hoboken,2002.
  • 2BALDI P,HATFIELD G W.DNA Microarrays and Gene Expression:From Experiments to Data Analysis and Modeling[M].Cambridge University Press,2002.
  • 3SCHMIDT U,BEGLEY C G.Cancer diagnosis and microarrays[J].International Journal of Biochemistry and Cell Biology,2003,35:119-124.
  • 4LIN T C,LIU R S,et al.Pattern classification in DNA microarray data of multiple tumor types[J].Pattern Recognition,2006,39:2426-2438.
  • 5ALIZADEH A A,EISEN M B,et al.Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling[J].Nature,2000,403:503-511.
  • 6TIBSHIRANI R,HASTIE T,et al.Diagnosis of multiple cancer types by shrunken centroids of gene expression[J].Proceedings of the National Academy of Sciences of the United States of America,2002,99:6567-6572.
  • 7DUDOIT S,FRIDLYAND J,SPEED T.Comparison of discrimination methods for the classification of tumors using gene expression data[J].Journal of the American Statistical Association,2002,97:77-87.
  • 8LEE J W,LEE J B.An extensive comparison of recent classification tools applied to microarray data[J].Computational Statistics and Data Analysis,2005,48:869-885.
  • 9CELEUX G,GOVAERT G.Gaussian parsimonious clustering models[J].Pattern Recognition,1995,28:781-793.
  • 10HASTIE T,TIBSHIRANI R,FRIEDMAN J.The Elements of Statistical Learning[M].New York:Springer-Verlag,2001.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部