期刊文献+

基于共享策略的k-支配轮廓体的求解算法 被引量:3

Sharing-based Algorithm to Find the Kdominant Skyline Cube
下载PDF
导出
摘要 现有的k支-配轮廓算法虽然可以对给定的高维数据集计算出不同k(k≤d)值对应的k-支配轮廓,但是,由于不能共享计算结果,会导致很多冗余操作.提出k-支配轮廓体的概念,即所有的k(k≤d)值对应的k-支配轮廓的集合,在此基础上,提出两种基于共享策略的k-支配轮廓体算法——由下到上算法(BTA)和由上到下算法(TBA).理论分析和实验验证表明,所提算法可有效的减少冗余操作. The existing algorithms can compute k-dominant skylines for different k value(k≤d) in high dimensional data set, because of not sharing the result, lead to much repeated work. A new concept of k-dominant skyline cube is proposed in this paper, which consists of all the k-dominant skylines(k≤d), and two sharing-based algorithms-BTA algorithm and TBA algorithm are proposed too. FUrthermore, detailed theoretical analyses and extensive experiments show that our algorithms can decrease much repeat work effectively.
出处 《小型微型计算机系统》 CSCD 北大核心 2009年第6期1072-1076,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60773100)资助 国家"十一五"科技支撑计划项目(2006BAK05BO2)资助
关键词 k-支配轮廓 高维数据集 k-支配轮廓体 共享策略 k-dominant skyline high dimensional data set k-dominant skyline cube sharing strategy
  • 相关文献

参考文献1

二级参考文献8

  • 1Borzsonyi S, Kossmann D, Stocker K. The Skyline Operator [DB]. ICDE, 2001.
  • 2Stojmenovic I, Miyakawa M. An Optimal Parallel Algorithm for Solving the Maximal Elements Problem in the Plane [J]. Parallel Computing, 1988,7 (2): 467-478.
  • 3Matousek J. Computing Dominances in En [J]. nformation Processing Letters, 1991,38 (5): 277-288.
  • 4Tan K, Eng P, Ooi B. Efficient Progressive Skyline Computation [DB]. VLDB, 2001.
  • 5Kossmann D, Ramsak F, Rost S. Shooting Stars in the Sky: an Online Algorithm for Skyline Queries [DB]. VLDB, 2002.
  • 6Roussopoulos N, Kelly S, Vincent F. Nearest Neighbor Queries [DB]. SIGMOD, 1995.
  • 7Hjaltason G, Samet H. Distance Browsing in Spatial Databases [J]. ACMTODS, 1999,24 (2): 265-318.
  • 8A Guttman. R-Tree a dynamic index structure for special search [DB]. Proc ACM SIGMOD, 1984,47-57.

共引文献7

同被引文献17

  • 1Borzsonyi S, Kossmann D, Stoeker K. The Skyline operator[C] // Proceedings of the 17th International Conference on Data Engineering. Washington: IEEE, 2001: 421-430.
  • 2Huang Y , Lee C , Chang C . Continuous distance -based Skyline queries in road networks[J]. Informa- tion Systems, 2012, 37(7): 611-633.
  • 3Luo C, Jiang Z, Hou W, et al. A sampling approach for Skyline query cardinality estimation[J].Knowl- edge and Information Systems, 2012, 32 (2): 281- 301.
  • 4Chen L, Hwang K, Wu J. MapReduce Skyline query processing with a new angular partitioning approach [C]/// Proceedings of the 2012 IEEE 26th Internation- al Parallel and Distributed Processing Symposium Workshops PhD Forum. Washington: IEEE, 2012 : 2262-2270.
  • 5Yuan Y, Lin X, Liu Q, et al. Efficient computation of the Skyline cube[C]//Proceedings of the alst In- ternational Conference on Very Large Data Bases. New York: ACM, 2005:241-252.
  • 6Gray J, Bosworth A, Layman A, et al. Data cube., a relational aggregation operator generalizing group-by, cross tab, and sub-totals [C]///Proceedings of the 12th International Conference on Data Engineering. Washington.. IEEE, 1996:152-159.
  • 7Yiu M, Lo E, Yung D. Measuring the sky: on com- puting data cubes via Skylining the measures [J]. IEEE Transactions on Knowledge and Data Engineer- ing, 2012, 24(3): 492-505.
  • 8Pei J, Ada W F, Lin X, et al. Computing com- pressed multidimensional Skyline cubes efficiently [C]//Proceedings of the 2007 IEEE 23rd Internation- al Conference on Data Engineering. Washington: IEEE, 2007: 96-105.
  • 9Xia T, Zhang D, Fang Z, et al. Online subspace Skyline query processing using the compressed Sky- cube[J]. ACM Transactions on Database Systems, 2012, 37(2): 1-36.
  • 10Wang Z, Xin J, Wang M, et al. Skycube computa- tion over wireless sensor networks based on extended skylines[C]//Proceedings of the 2010 IEEE Interna- tional Conference on Information and Automation. Washington: IEEE, 2010: 1572-1576.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部