期刊文献+

利用空间金字塔分块与PLSA的场景分类方法 被引量:2

Scene Classification Using Spatial Pyramid Blocks and PLSA
下载PDF
导出
摘要 提出一种基于空间金字塔分块与PLSA方法相结合的场景分类方法.该方法首先通过空间金字塔分块的方式来构建图像区域集合,然后利用概率潜在语义分析(PLSA)从图像的区域集合中发现潜在语义模型,最后根据潜在语义模型找出所有图像区域中潜在语义出现概率来构建区域潜在语义特征,并使用该特征构建SVM模型进行场景分类.在13类场景图像上的试验表明,和其他方法相比,该方法中不需要进行大量的手工标注,而且具有更高的分类准确率. Presented a novel scene classification method based on Spatial Pyramid Blocks and PLSA. Spatial pyramid blocks collection is first achieved by dividing image, and then Probabilistie Latent Semantic Analysis (PLSA), a generative model from the statistical text literature is applied to a bag of visual words representation for block regions. Finally, latent semantic feature is constructed by applying PLSA model to each spatial pyramid block region in an image. The resulting feature retains sufficient discriminative information for accurate scene classification. Experiment results show that this method has satisfactory classification performances on a large set of 13 categories of complex scenes.
出处 《小型微型计算机系统》 CSCD 北大核心 2009年第6期1133-1136,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60473117)资助 国家“八六三”计划项目(2006AA01Z319)资助
关键词 场景分类 区域潜在语义 空间金字塔分块 PLSA scene classification region latent semantic spatial pyramid blocks PLSA
  • 相关文献

参考文献11

  • 1Vailaya A, Figueiredo A, Jain A,et al. Image classification for content-based indexing [J]. IEEE Transactions on Image Processing, 2001,10:117-129.
  • 2Chang E, Goh K, Sychay G,et al. Cbsa: content-based soft annotation for multimodal image retrieval using bayes point machines [J]. IEEE Transactions on Circuits and Systems for Video Technology ,2003, 13(1):26-38.
  • 3Szummer M, Picard R W. Indoor-outdoor image classification [C]. IEEE International Workshop on Content-based Access of Image and Video Databases, in Conjuntion with ICCV' 98, Bombay, India,1998, 42-50.
  • 4Oliva A, Torralba A. Modeling the shape of the scene: a holistie representation of the spatial envelope[J]. International Journal of Computer Vision, 2001, 42(3):145-175.
  • 5Vogel J, Schiele B. Natural scene retrieval based on a semantic modeling step[C]. International Conference on Image and Video Retrieval, LNCS,Dublin, Ireland, 2004, 3115:207-215.
  • 6Fei-fei L, Perona P, A bayesian hierarchical model for learning natural scene categories [C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 2005, 524-531.
  • 7Quelhas P, Monay F, Odobez J ,et al. Modeling scenes with local descriptors and latent aspects[C]. International Conference on Computer Vision, Beijing, China, 2005, 883-890.
  • 8Bosch A, Zisserman A, Munoz X. Scene classification via plsa [C]. European Conference on Computer Vision, Graz, Austria, 2006,4:517-530.
  • 9Hofmann T. Unsupervised learning by probabilistic latent semantic analysis[J]. Machine Learning, 2001, 41 (2) : 177-196.
  • 10Blei D, Ng A, Jordan M. Latent dirichlet allocation[J]. Journal of Machine Learning Research,2003,3:993-1022.

同被引文献16

  • 1LSCOM lexicon definitions and annotations version 1.0[ R]. DTO Challenge Workshop on Large Scale Concept Ontology for Multi- media, Columbia University ADVENT Technical Report #217- 2006-3, March 2006.
  • 2Wessel Kraaij, Paul Over. TRECVID2006 HighLevel feature task: overviewE C]. Proceeding of TRECVID Workshop, 2006.
  • 3Lyengar G, Nock H J, Neff C. Discriminative model fusion for se- mantic concept detection and annotation in video [ C ]. Proceeding of ACM International Conference on Multimedia (ACM MM ). Berkeley, California, USA, 2003.
  • 4Jiang W, Chang S-F, Loui A. Active concept-based concept fusion with partial user labels [ C ]. Proceedings of 1EEE International Conference on Image Processing, Atlanta, GA, USA, 2006.
  • 5Xie Le-xing, Yan Rong, Yang Jun. Multi-concept learning with large-scale multimedia lexicons[C]. ICIP 2008.
  • 6Zha Z-J, Mei T, Hua X-S, et al. Refining video annotation by ex- ploiting pairwise concurrent relation [ C ]. In ACM Multimedia, 2007 : 345-348.
  • 7Wei X-Y, Jiang Y-G, Ngo C-W. Exploring inter-concept relation- ship with context space for semantic video indexing [ C ]. In CIVR 2009, Santorini, GR, July 8-10, 2009.
  • 8Chen Dan-wen, Deng Li-qiong, Yuan Zhi-min, et al. Semantic video concept detection based on correlative concept selection [ C ]. ICCEE 2010. 2010. 295-299.
  • 9Amir A, et al. IBM research trecvid-2003 video retrieval system [ C ]. Proc. NIST TRECVID Video Retrieval Evaluation Work- shop, 2003.
  • 10Snoek C G M, et al. The mediamill trecvid 2005 semantic video search engine [ C]. Proc. 3rd TRECVID Workshop, Gaithers- burg, USA, Nov. 2005.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部