期刊文献+

一种新的基于自适应提升小波的图像检索算法 被引量:4

Algorithm of Adaptive Lifting Scheme-based Texture Image Retrieval
下载PDF
导出
摘要 基于小波域的图像检索算法主要存在两个问题:首先是噪声导致图像的不适当分解,降低特征的提取质量,影响检索结果;其次是从分解后的子带图像中提取的梯度信息,作为描述特征之一,对于图像的几何变换,特别是旋转和镜像非常敏感.针对上述问题,本文提出一种新的选择子—梯度幅值描述子对图像进行自适应分解,降低了噪声对检索结果的影响,并设计了一个名为合成排序梯度直方图的特征向量以便更好地衡量图像相似性.实验证明,本文算法具有良好的缩放、旋转和镜像不变性,检索结果能较好地符合人的视觉感受. There are two disadvantages in the image retrieval based on wavelet transforms. The one is that unsuitable decomposition of image leaded by noise may influence the retrieval result, the other is the gradient information extracted from sub-images, as one of features, is over sensitive to geometry transforms. In this paper, a novel algorithm for image retrieval using a new descriptor named Gradient Amplitude Descriptor (GAD), which aims at improving the adaptive wavelet lifting scheme based on Neville filters is proposed. To measure the geometrical and visual similarity between images, the Synthetic Sorted Gradient Direction Histogram (SSGDH) is generated, as a new feature vector, by gradient calculation of wavelet coefficients. Comparisons with prior methods show superiority in achieving both robustness to geometrical variations and optimum acutance matching to human visual perception.
作者 姚屹 邹北骥
出处 《小型微型计算机系统》 CSCD 北大核心 2009年第6期1160-1164,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60673093)资助 湖南省自然科学基金项目(06JJ2065)资助 长江学者和创新团队发展计划资助
关键词 自适应提升 梯度幅值描述子 Neville滤波器组 合成排序梯度直方图 adaptive lifting gradient amplitude descriptor neville filters synthetic sorted gradient direction histogram
  • 相关文献

参考文献1

二级参考文献1

共引文献15

同被引文献56

  • 1Datta R, Joshi D, Li J, et al. Image Retrieval: Ideas, Influences, and Trends of the New Age [J]. ACM Computing Surveys (S0360-0300), 2008, 40(2): 1-60.
  • 2Ming H, Tong C, Siu K, et al. A Fast and Effective Model for Wavelet Subband Histograms and Its Application in Texture Image Retrieval [J]. IEEE Transactions on Image Processing(S1057-7149), 2006, 15(10): 3078-3088.
  • 3Datta R, Ge W, Li J, et al. Toward Bridging the Annotation-Retrieval Gap in Image search [J]. IEEE Multimedia (S1070-986X), 2007, 14(3): 24-35.
  • 4Wang K, Lin H, Chan P, et al. Implementation of an Image Retrieval System Using Wavelet Decomposition and Gradient Variation [J]. WSEAS Transactions on Computers(S1109-2750), 2008, 7(6): 724-734.
  • 5Olanda R, Perez M, Benavent X. Tiling of the Wavelet Lowpass Subbands for Progressive Browsing of Images [J]. IEEE Signal ProeessingLetters(S1070-9908), 2006, 13(11): 680-683.
  • 6Tao L, Ogihara M. Toward Intelligent Music Information Retrieval [J]. IEEE Multimedia(S1070-986X), 2006, 8(3): 564-574.
  • 7Kokare M, Biswas P K, Chatterji B N. Rotation-lnvariant Texture Image Retrieval Using Rotated Complex Wavelet Filters [J]. IEEE Trans on Systems, Man, and Cybernetics, Part B: Cybernetics(S1083-4419), 2006, 36(6): 1273-1282.
  • 8Jayalakshmi M, Merchant S N, Desai U B. Optimum Retrieval of Watermark from Wavelet Significant Coefficients [J]. IET Information Security(S1751-8709), 2008, 2(4): 119-128.
  • 9Do M N, Vetterli M. The Contourlet Transform: an Efficient Directional Multiresolution Image Representation [J]. IEEE Transactions on Image Processing(S1522-4880), 2005, 14(12): 2091-2106.
  • 10Cunha da A, Zhou Jianping, Do M N. The Nonsubsampled Contourlet Transform: Theory, Design, and Applications [J]. IEEE Transactions on Image Processing(S1057-7149), 2006, 15(10): 3089-3101.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部