期刊文献+

计算机辅助鉴别乳腺良、恶性肿块的临床价值 被引量:2

Clinical value of computer-aided algorithm on radiologist's diagnosis of masses using breast ultrasound imaging
原文传递
导出
摘要 目的提出~种基于灰度级二维直方图的计算机辅助分割算法,对乳腺高频超声图像中的肿块进行自动识别和分割处理,旨在提高乳腺良、恶性肿块的检出准确率。方法采集100个乳腺肿块二维超声图像共466张(原片),应用计算机软件对原片进行分割处理,得到分割后图片。超声医师采用双盲法分别根据原片和分割后图片中的超声征象进行良、恶性判断,运用受试者工作曲线(ROC曲线)计算曲线下面积(A),比较前后两次诊断结果,分析图片处理前后诊断结果的差异性。结果处理后的图片中乳腺肿块的边缘、钙化等信息明显突出。超声医师对良、恶性肿块的确诊率明显提高。当特异性为74.31%时,诊断敏感性由基于原片的70.32%提高到图片分割后的90.52%。ROC曲线下面积由分割前的80.8%上升到90.5%,差异有统计学意义(P〈0.01)。结论此分割算法能明显优化乳腺肿块的边缘信息,较好地突显肿块内微钙化,在一定程度上降低漏诊率和误诊率,提高乳腺良恶性肿块的确诊率。 Objective To propose a novel computer-aided segment algorithm, and retrospectively investigate its effect on radiologist's sensitivity and specificity for discriminating malignant masses from benign masses basing on ultrasound images. Methods Four hundred and sixty-six images of 100 masses obtained by conventional ultrasound were processed by a novel segment algorithm. Radiologists who were blind to the histology results were invited to analyse the original and computerized images respectively. The sensitivity and specificity were calculated by means of a binary outcome using receiver operating characteristic(ROC) analysis. Results By using the segment algorithm, the quantity of the image was obviously improved,especially the margin and calcification of the masses. The diagnostic performance of the radiologists was also improved. The sensitivity rose from 70.32% to 90. 52% while the specificity was 74.31%. The area under the ROC curve increased significantly (P 〈 0.01) from 80.8% to 90.5%. Conclusions The proposed segmentation algorithm can improve the diagnosis performance of the radiologists by meliorating the quality of the ultrasound image.
出处 《中华超声影像学杂志》 CSCD 北大核心 2009年第5期418-421,共4页 Chinese Journal of Ultrasonography
基金 国家自然科学基金资助课题(30670546,60573071)
关键词 超声检查 乳腺疾病 图像处理 计算机辅助 Ultrasonography Breast diseases Image processing, computer-assisted
  • 相关文献

参考文献9

  • 1罗静.新辅助化疗对早期乳腺癌保乳治疗的影响[J].中华乳腺病杂志(电子版),2008,2(3):34-38. 被引量:6
  • 2Chen CM,Chou YH,Han KC,et al.Breast lesions on sonograms:computer-aided diagnosis with mealy setting-independent features and artificial neural networks.Radiology,2003,226:504-514.
  • 3Chen DR,Chang RF,Kuo WJ,et al.Diagnosis of breast tumors with sonographic texture analysis using wavelet transform and neural networks.Ultrasound Med Biol,2002,28:1301-1310.
  • 4李波.医学超声图像分割技术[J].中国医学物理学杂志,2005,22(4):572-573. 被引量:5
  • 5黄剑华,于瀛星,张英涛,唐降龙,郭延辉.基于一致性直方图的超声乳腺图片分割方法[J].哈尔滨工业大学学报,2008,40(7):1103-1106. 被引量:8
  • 6Guo Y,Cheng HD,Huang J,et al.Breast ultrasound image enhancement using fuzzy logic.Ultrasound Med Biol,2006,32:237-247.
  • 7American College of Radiology.Breast imaging reporting and data system:BI-RADS Atlas.4th ed.Reston,VA:American College of Radiology,2003.
  • 8Gefen S,Tretiak OJ,Piccoli CW,et al.ROC analysis of ultrasound tissue characterization classifiers for breast cancer diagnosis.IEEE Trans Med Imaging,2003,22:170-177.
  • 9严加勇,庄天戈.医学超声图像分割技术的研究及发展趋势[J].北京生物医学工程,2003,22(1):67-71. 被引量:21

二级参考文献31

  • 1罗忠亮,王修信,胡维平.基于小波分析的医学超声图像去噪与增强研究[J].计算机工程与应用,2004,40(19):230-232. 被引量:6
  • 2翁璇,郭兴明,刘晓东.超声医学图像灰度校正方法的改进[J].医疗卫生装备,2004,25(7):1-3. 被引量:4
  • 3蔡勇,陈念年,李波.超声医学图像的自动分割[J].兰州交通大学学报,2004,23(4):61-64. 被引量:4
  • 4贾海霞,苏逢锡,郭巨江,宋尔卫,贾卫娟,龚畅,胡孝渠,秦丽.乳腺癌新辅助化疗的坐标法定位[J].中华普通外科杂志,2006,21(3):225-225. 被引量:5
  • 5[17]Deng J W, Tsui H T. A fast level set method for segmentation of low contrast noisy biomedical images. Pattern Recognition Letters, 2002,23 (1): 161-169
  • 6[1]Chen C M, Lu H H S, Lin Y C. An early vision-based snake model for ultrasound image segmentation. Ultrasound in Med & Biol, 2000,26 (2): 273-285
  • 7[2]Fan L, Braden G A, Herrington D M. Nonlinear wavelet filter for intra-cononary ultrasound images. Proceedings of the 1996 23rd Annual Meeting on Computers in Cardiology, 1996, P41 -44
  • 8[3]AarninkRG, GiesenRJB, HuynenAL, etal. A practical clinical method for method for contour determination in ultrasonographic prostate images. Ultrasound in Med & Biol, 1994, 20 (8): 705 - 717
  • 9[4]Brathwaite P A, Chandran K B, McPherson D D, et al. Lumen detection in human IVUS images using region-growing. Computers in Cardiology, 1996, (9): 37-40
  • 10[5]Mignotte M, Meunier J, Tardif J C. Endocardial boundary estimation and tracking in echocardiographic images using deformable templates and Markov random fields. Pattern Analysis & Application, 2001, (4):256-271

共引文献36

同被引文献15

  • 1李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757. 被引量:125
  • 2孙继平,吴冰,刘晓阳.基于膨胀/腐蚀运算的神经网络图像预处理方法及其应用研究[J].计算机学报,2005,28(6):985-990. 被引量:30
  • 3曹远星,董育宁.蛇模型综述[J].信息技术,2006,30(3):113-116. 被引量:4
  • 4Michael Kass, Andrew Witkin, et al. Snakes: Active Contour Models. International Journal of Computer Vision, 1987, 1 (4) : 321- 331.
  • 5N Otsu-Automatica. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernet ics, 1979,9(1) :62-66.
  • 6L Sobel. Neighborhood coding of binary images for fast contour following and general binary array processing. Computer Graphics Image Process, 1978,8( 1 ) : 127-135.
  • 7DJ Williams, M Shah. A fast algorithm for active contours and curvature estimation. CVGIP : Image Understanding, 1992,55 ( 1 ) : 14-26.
  • 8DH Douglas, TK Peucker. Algorithms for the reduction of the number of points required to represent a digitized line or its carica ture. the Canadian Cartographer, 1973,11 (10) : 112-122.
  • 9B Sahiner, N Petric, HP Chan, et al. Computer aided character ization of mammographie masses: accuracy of mass segmentation and its effects on characterization. IEEETrans. onMedical Ima ging,2001,20(12) :1275- 1284.
  • 10Lin Qizhong, Yu Jiangguo, Zhao Nuan, et al. Feature analysis of ultrasound breast tumor images. China J SeiInstrum, 2006,97 (6) :744-746.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部