期刊文献+

基于免疫机理的入侵检测系统的数学描述 被引量:2

Mathematic Description of Intrusion Detection System Based on Immune Mechanism
下载PDF
导出
摘要 入侵检测问题可以看作是一种模式分类问题,但由于该问题具有一些固有特点如高维特征空间、模式之间的线性不可分性、正常和异常数据的严重不均匀性,使得直接使用传统的模式识别方法进行攻击检测时比较困难。自然免疫系统实际上是一个分布的具有自适应性和自学习能力的分类器,它通过学习、记忆和联想提取来解决识别和分类任务,基于自然免疫机理设计了一个入侵检测系统,并给出了它的性能指标的数学描述。重点是基于免疫机理设计了具有多层次性、多样性、独特性、异常检测能力、抑制虚警能力、健壮性、自适应性和动态防护性的入侵检测系统AI-IDS。 Intrusion detection can be looked as a problem of pattern classification. Since intrusion detection has some intrinsic characteristic such as high dimensional feature spaces, linearity non-differentiation, severe unevenness of normal pattern and anomaly pattern, it is very difficult to detect intrusion by using classical pattern recognition method directly. Nature immune system is a self-adaptive and self-learning classifier, which can accomplish recognition and classification by learning, remembrance and association. In this paper first we used four-tuple to define nature immune system and intrusion detection system, and then we gave the mathematic formalization description of performance index of intrusion detection system. Finally we put emphasis on designing an intrusion detection system based on immune mechanism, named AIIDS, which has many good features such as multiple layers, distributablility, diversity, uniqueness, anomaly detection, restraining false positive alarm, robustness, adaptability, dynamic defensive.
作者 闫巧
出处 《计算机科学》 CSCD 北大核心 2009年第6期78-81,84,共5页 Computer Science
基金 国家"973"重点基础研究发展规划基金项目(2003CB314805) 国家自然基金-广东省联合基金(U0675001) 深圳大学青年科学基金(200875)资助
关键词 入侵检测 免疫机理 模式分类 Intrusion detection, Immune mechanism, Pattern classification
  • 相关文献

参考文献5

  • 1Axelsson S. The Base-Rate Fallacy and the Difficulty of Intrusion Detection[J].ACM Transactions on Information and System Security, 2000,3 (3) : 186-205
  • 2Hofmeyr S A. An Interpretative Introduction to the Immune System[M]//I. Cohen, L. Segel, eds. Design Principles for the Immune System and other Distributed Autonomous Systems. Oxford University Press, 2000
  • 3Forrest S, Hofmeyr S, Somayaji A. Computer Immunology[J].Communications of the ACM, 1997,40(10) : 88-96
  • 4Hofmeyr S A. A Immunological Model of Distributed Detection and its Application to Computer Security[D]. Department of Computer Sciences, University of New Mexico, Albuquerque, NM,April 1999.
  • 5闫巧,江勇,吴建平.基于免疫机理的网络入侵检测系统的抗体生成与检测组件[J].计算机学报,2005,28(10):1601-1607. 被引量:18

二级参考文献10

  • 1Hofmeyr S.A.. An interpretative introduction to the immune system. In: Cohen I., Segel L. eds.. Design Principles for the Immune System and Other Distributed Autonomous Systems. England: Oxford University Press, 2000.
  • 2Roesch M. Snort- lightweight intrusion detection for networks. In: Proceedings of the 13th USENIX Conference on System Administration, Seattle, Washington, 1999, 229~238.
  • 3Forrest S., Perelson A., Allen L.. Self-noself discrimination in a computer. In: Proceedings of the 1994 IEEE Symposium on Researchin Security and Priracy, Los Alamos, CA, 1994.
  • 4Kim J., Bentley J.P.. An evaluation of negative selection in an artificial immune system for network intrusion detection. In: Proceedings of the Genetic and Evolutionary Computation Conference 2001(GECCO-2001), San Francisco, 2001,  1330~1337.
  • 5Axelsson S.. The base-rate fallacy and its implications for the difficulty of intrusion detection. In: Proceedings of the 6th ACM Conference on Computer and Communications Security, Kent Ridge Digital Labs, Singapore, 1999, 1~7.
  • 6Lippmann R., Haines J.W.. The 1999 Darpa off-line intrusion detection evaluation. Computer Networks, 2000, 34(4): 579~595.
  • 7Harmer P.K.,Williams P.D., Gunsch G.H., Lamont G.B.. An artificial immune system architecture for computer security applications. IEEE Transactions on Evolutionary Computation, 2002, 6(3): 252~280.
  • 8Hofmeyr S.A.. An immunological model of distributed detection and its application to computer security[Ph.D. dissertation]. University of New Mexico, New Mexico, 1999.
  • 9Dasgupta D., Gonzalez F.. An immunity-based technique to characterize intrusions in computer networks. IEEE Transactions on Evolutionary Computation, 2002, 6(3): 281~291.
  • 10Kim J.. An artificial immune system for network intrusion detection. In: Proceedings of the 7th European Congress on Intelligent Techniques and Soft Computing(EUFIT'99), Aachen, Germany, 1999.

共引文献17

同被引文献12

  • 1庞清乐,孙同景,杨福刚,钟麦英.基于粗集理论的归一化方法[J].计算机工程,2007,33(8):36-38. 被引量:4
  • 2石纯一,张伟.基于Agent的计算[M].北京:清华大学出版社.2007:11-12,119-120.
  • 3De CASTRO L N, Von ZUBEN J F. An immunological approach to initialize centers of radial basis function neural networks[C]//Proc of BRAZILIAN V Conference on Neural Networks. Brazil: [s.n.] , 2001:79-84.
  • 4De CASTRO L N, Von ZUBEN F J. The clonal selection algorithm with engineering applications[C]//Proc of GECCO, Workshop on Artificial Immune Systems and Their Applications.2000:36-37.
  • 5De CASTRO L N, Von ZUBEN F J. Artificial immune systems: part I: basic theory and applications[R].1999.
  • 6FARMER J D, PACKARD N H, PERELSON A S. The immune system, adaptation, and machine learning[J].Physics D,1986,2(1-3):187-204.
  • 7De CASTRO L M, Von ZUBEN F J. Artificial immune systems: part Ⅱ: a survey of applications[R].2000.
  • 8DASGUPTA D. Artificial immune systems and their applications[M].[S.l.] : Springer Verlag Inc,1999:118-231.
  • 9廖备水,李石坚,姚远,高济.自主计算概念模型与实现方法[J].软件学报,2008,19(4):779-802. 被引量:33
  • 10张家超,孔媛媛.结合SVM与免疫遗传算法设计IDS的检测算法[J].微电子学与计算机,2008,25(10):206-209. 被引量:3

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部