期刊文献+

引入分割团的BK推理算法及其在Robocup中的应用 被引量:1

Separators Introduced BK Inference Algorithm and its Application in Robocup
下载PDF
导出
摘要 BK算法是动态贝叶斯网络(DBNs)的一种主要近似推理方法,但对网络的人工分割会引入较大误差。首先通过将决策结点转换成随机结点,给出基于DBNs的Robocup协作问题的一种建模方法;然后,给出一种引入分割团的新BK算法,以减小网络分割产生的误差,并对Robocup中的两个球员配合射门问题进行推理。引入分割团的BK算法和1.5片联合树推理算法的比较实验结果表明,引入分割团使BK算法在精度损失较小的情况下,时间性能有显著提高。 Boyen-Koller(BK) algorithm is the primary algorithm of approximate inference for DBNs,however,more eror is introduced by the artificial division of the network. A new modeling means of cooperation problem in Robocup was given in this paper based on DBNs by converting the decision-making node into random node. Then a new BK algorithm introducing conditionally independent separators was presented for decreasing the error of inference, and was used to solve the problem of two Agent coordination shooting in Robocup. The results of inference experiment implemented on BK algorithm introducing separators and 1.5-slice junction tree algorithm show that time performance has improved significantly in the case that the accuracy loss is relatively low by introducing conditionally independent separators in BK algorithm.
出处 《计算机科学》 CSCD 北大核心 2009年第6期214-216,234,共4页 Computer Science
基金 国家自然科学基金(60705015) 安徽省自然科学基金(070412064) 安徽省教育厅自然科学重点项目(KJ2009A020Z)资助
关键词 动态贝叶斯网络 近似推理 BK算法 1.5片联合树 Dynamic Bayesian networks, Approximate inference, BK algorithm, 1.5-slice junction tree
  • 相关文献

参考文献10

  • 1Murphy K. Dynamic Bayesian networks: representation, inference and learning[D]. University of California, Berkeley, 2002
  • 2Jensen F V,Jensen F. Optimal junction trees[C]//Proc, of UAl94. 1994:360-366
  • 3周本达,王浩,姚宏亮.1(1/2)片联合树算法在动态贝叶斯网精确推理中的应用[J].计算机工程与应用,2005,41(14):81-84. 被引量:3
  • 4Boyen X, Kollcn D. Tractable inference for complex stochastic processes[C]//Proc, of UAI-98. San Francisco: Morgan Kaufmann, 1998: 33-42
  • 5张润梅,王浩,姚宏亮,方宝富.影响图及其在Robocup中的应用[J].系统仿真学报,2005,17(1):134-137. 被引量:6
  • 6Dechter R. Bucket elimination: A unifying framework for probabilistic inference[C]//Proc, of UAI-96. San Francisco: Morgan Kaufmann, 1996 : 75-104
  • 7Draper D. Clustering without(thinking about) triangulation[C]//Proc, of UAI-95. San Francisco: Morgan Kaufmann, 1995: 125-133
  • 8Kjaerulff U. Reduction of computational complexity in Bayesian networks through removal of weak dependences[C]//Proc, of UAI-94. 1994 : 374-382
  • 9Paskin M A. Thin junction tree filters frontier for simultaneous localization and mapping[C]//Proc. of IJCAI-03. 2003:1157-1164
  • 10Dagum P, Luby M. Approximating probabilistic inference using Bayesian networks is NP-hard[J].Artificial Intelligence, 1993, 60(1):141-151

二级参考文献15

  • 1汤哲 孙增圻.机器人足球中的协作[A]..第四届全球智能与自动化大会论文集[C].上海,2002,6.469~473.
  • 2D Cannel Markovitch S. Learning models of intelligent agents [A].Proceedings of the Thirteenth National Conference on Artificial Intelligence and the Eighth Innovative Applications of Artificial Intelligence Conference[C].1996, Vol. 2: 62-67. http://citeseer.ni.nec.com/carme1961earning.html
  • 3Howard R A Matheson J E. Influence diagrams[J]. Howard R.A.Matheson J.E.(Eds.). Readings on the principles and applications ofdecision analysis, Strategic Decisions Group, Menlo Park, CA, 1984,11(2): 719-762.
  • 4Noh S Gmytrasiewicz P J. Agent modeling in antiair defense[A].Proceedings of the Sixth International Conference on User Modeling[C]. 1997.389-400.
  • 5J Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference[M]. Morgan Kaufmann, San Mateo, California CA, 1988.
  • 6Gerhard W. Multi-agent system S:A modem Approach to Distributed Artificial Intelligence[M]. Boston, MIT press, 1999.
  • 7D.Suryadi Piotr J.Gmytrasiewicz. Learning Models of Other Agents Using Influence Diagrams[EB/OL]. http://citeseer.nj.nec.com/suryadi991earning.html, 1999.
  • 8Vidal J M, Durfee E H. Recursive agent modeling using limited rationality[A]. Proceedings of the First International Conference on multi-Agent Systems (ICMAS)[C]. 1995.376-383.
  • 9C Huang ed. Inference in belief networks:A procedural guide[J].International journal of approximate reasoning, 1994; 11:1~158.
  • 10Uffe Kjarulff. A Computational Scheme for Dynamic Bayesian Networks[M].Institute for Electronic Systems Department of Mathematics and Computer Science.

共引文献7

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部