摘要
By employing the technique of integration within an ordered product of operators, we derive natural representations of the rotation operator, the two-mode Fourier transform operator and the two-mode parity operator in entangled state representations. As an application, it is proved that the rotation operator constructed by the entangled state representation is a useful tool to solve the exact energy spectra of the two-mode harmonic oscillators with coordinat-momentum interaction.
By employing the technique of integration within an ordered product of operators, we derive natural representations of the rotation operator, the two-mode Fourier transform operator and the two-mode parity operator in entangled state representations. As an application, it is proved that the rotation operator constructed by the entangled state representation is a useful tool to solve the exact energy spectra of the two-mode harmonic oscillators with coordinat-momentum interaction.
基金
Supported by the Natural Science Foundation of Shandong Province under Grant No Y2008A16.