摘要
We investigate the dynamical behavior of a coupled dispersionless system describing a current-conducting string with infinite length within a magnetic field. Thus, following a dynamical system approach, we unwrap typical miscellaneous traveling waves including localized and periodic ones. Studying the relative stabilities of such structures through their energy densities, we find that under some boundary conditions, localized waves moving in positive directions are more stable than periodic waves which in contrast stand for the most stable traveling waves in another boundary condition situation.
We investigate the dynamical behavior of a coupled dispersionless system describing a current-conducting string with infinite length within a magnetic field. Thus, following a dynamical system approach, we unwrap typical miscellaneous traveling waves including localized and periodic ones. Studying the relative stabilities of such structures through their energy densities, we find that under some boundary conditions, localized waves moving in positive directions are more stable than periodic waves which in contrast stand for the most stable traveling waves in another boundary condition situation.