摘要
The relative stability of fee and bcc solid solutions and amorphous phase with different compositions in the Cu-Al system is studied by molecular dynamics simulations with n-body potentials. For CU1-xAlx alloys, the calculations show that the fee solid solution has the lowest energies in the composition region with x 〈 0.32 or x 〉 0.72, while the bcc solid solution has the lowest energies in the central composition range, in agreement with the ball-milling experiments that a single bcc solid solution with 0.30 〈 x 〈 0.70 is obtained. The evolution of structures in solid solutions and amorphous phase is studied by the coordination number (CN) and bond-length analysis so as to unveil the underlying physics. It is found that the energy sequence among three phases is determined by the competition in energy change originating from the bond length and CNs (or the number of bonds).
The relative stability of fee and bcc solid solutions and amorphous phase with different compositions in the Cu-Al system is studied by molecular dynamics simulations with n-body potentials. For CU1-xAlx alloys, the calculations show that the fee solid solution has the lowest energies in the composition region with x 〈 0.32 or x 〉 0.72, while the bcc solid solution has the lowest energies in the central composition range, in agreement with the ball-milling experiments that a single bcc solid solution with 0.30 〈 x 〈 0.70 is obtained. The evolution of structures in solid solutions and amorphous phase is studied by the coordination number (CN) and bond-length analysis so as to unveil the underlying physics. It is found that the energy sequence among three phases is determined by the competition in energy change originating from the bond length and CNs (or the number of bonds).
基金
Supported by the National Natural Science Foundation of China under Grant Nos 50471010 and 50871057, and the Program for New Century Excellent Talents in University, Ministry of Education of China