期刊文献+

气液搅拌釜泛点转速的声波测量 被引量:6

Identification of flooding-loading transition in stirred vessel based on acoustic method
下载PDF
导出
摘要 通过对采集的搅拌釜中声信号的频谱分析、小波分解和R/S分析,获得了代表气液体系运动的特征信号频段(d4、d5、d6频段),针对声波特征信号频段能量随搅拌转速的规律性变化,提出了搅拌釜泛点转速的声波测量判据,即声能量分率快速增加并开始趋于稳定时所对应的搅拌转速为泛点转速。以空气-水体系为例,考察了不同通气量和静液位高度下的泛点转速,发现泛点转速随通气量的增加而增加,随静液位高度的增加而减小。与目测法相比,声波法测量值的平均相对误差为2.62%,优于传统的功耗法。由此获得了一种快速、准确、安全的搅拌釜反应器泛点转速测量技术,具有良好的工业应用前景。 The characteristic scale (G1) of acoustic emission (AE) signals that represent the interactions between bubbles and liquid phase in a stirred tank was obtained by using AE measurement based on wavelet transform and R/S analysis. Since the energy fraction of AE signals in G1 scale change regularly with the impeller speed, a criterion to determine the flooding-loading flow regime transition is presented. When the AE energy fraction in the characteristic frequency scales increased rapidly and began to remain constant, the corresponding impeller speed was the minimum speed to prevent flooding (Nf). Furthermore, the influences of aeration rate and total liquid depth on the criterion were investigated by airwater experiments. It was found that Nf increased with increasing aeration rate but decreased with increasing total liquid depth. By comparing experimental results from AE measurement with those from visual observation, the average relative errors of AE method were no more than 2.62%, better than the power consumption method. Finally, it is concluded that multi-scale analysis of acoustic signals is feasible for determining the flooding-loading flow regime transition and is sensitive, non-intrusive and accurate.
出处 《化工学报》 EI CAS CSCD 北大核心 2009年第5期1148-1155,共8页 CIESC Journal
基金 国家自然科学基金项目(20490205 20736011) 国家高技术研究发展计划项目(2007AA030208)~~
关键词 声发射 泛点转速 功耗 小波 R/S分析 acoustic emission minimum speed to prevent flooding power consumption wavelet R/S analysis
  • 相关文献

参考文献16

  • 1Wang Kai(王凯),Feng Lianfang(冯连芳).Design of Mixing Equipment(混合设备设计).Beijing:Mechanism Industry Press,2001
  • 2侯治中,王凯.搅拌槽内气-液体系的分散、传质和传热[J].合成橡胶工业,1995,18(2):118-122. 被引量:6
  • 3Warmoeskerken M, Smith J M. Flooding of disc turbines in gas-liquid dispersions: a new description of the phenomenon. Chemical Engineering Science, 1985, 40 (11): 2063-2071
  • 4Andrej Bombac, Iztok Zun. Individual impeller flooding in aerated vessel stirred by multiple-Rushton impellers. Chemical Engineering Journal, 2006, 116:85-95
  • 5王靖岱,蒋斌波,阳永荣,舒伟杰.声波的多尺度解析与气固流化床故障检测[J].化工学报,2006,57(7):1560-1564. 被引量:21
  • 6Hiroyuki T, Toyokazu Y, Huang C C, Isao S. Monitoring particle fluidization in a fluidized bed granulator with an acoustic emission sensor. Powder Technology, 2000, 113 (1/2): 88-96
  • 7Cody G D, Goldfarb D J, Storch G V, Norris A N. Particle granular temperature in gas fluidized beds. Powder Technology, 1996, 87 (3): 211-232
  • 8Jiang X J, Wang J D, Jiang B B, Yang Y R, Hou L X. Study of power spectrum of acoustic emission (AE) by accelerometers in fluidized beds. Industrial & Engineering Chemistry Research, 2007, 46 (21): 6904-6909
  • 9黄正梁,王靖岱,阳永荣.声波的多尺度分解与搅拌釜中浆液浓度的测量[J].化工学报,2006,57(9):2062-2067. 被引量:18
  • 10Rieger F, Ditl P. Suspension of solid particles. Chemical Engineering Science, 1994, 49 (14): 2219-2227

二级参考文献18

共引文献37

同被引文献69

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部