期刊文献+

4-进紧支撑双对称双正交多小波 被引量:1

4-Bank Compactly Supported Bi-Symmetric Biorthonormal Wavelets Bases
下载PDF
导出
摘要 该文给出了一类具有双对称4-进双正交小波的构造方法,该小波类可以由它的低通滤波器确定,因此,其自由度可以运用到应用背景.构造具有较高消失矩的双对称双正交多小波族,为相关应用提供了大量选择. A class of four-bank bisymmetric biorthogonal wavelet bases has been constructed, in which any wavelet system can be determined by its low-pass filter. Thus, the least restrictive conditions are needed for forming a wavelet so that the free degrees can be reversed for application requirement. Some concrete examples with high vanishing moments are also given. These wavelets can process the boundary conveniently, and enjoy the highly efficient computations in application.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2009年第2期141-144,共4页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家自然科学基金(10571049) 湖南文理学院优秀青年项目(QNYX0813) 湖南省科技计划资助项目
关键词 4-进小波 双正交小波 正交性 图像压缩 4-bank wavelets biorthonormal wavelets orthogonality image compression
  • 相关文献

参考文献7

  • 1Cohen A,Daubechies I,Feauveau J C.Biorthogonal bases of compactly supported wavelets[J].Comm on Pure and Applied Mathematics,1992,45:485-560.
  • 2Chui C,Lian J A.Construction of compactly supported symmetric and anti symmetric orthogonal wavelets with scale = 3[J].Applied Comput Hannon Anal,1995(2):68-84.
  • 3Peng L Z,Wang Y G.The parameterization and algebraic structure of 3-bank wavelets system[J].Science in China(Series A),2001,31:602-614.
  • 4Han B.Symmetric orthogonal scaling functions and wavelets with dilation factor 4[J].Adv Comput Math,1998,8:221-247.
  • 5彭立中,王永革.具有优美结构的紧支正交小波的构造[J].中国科学(E辑),2004,34(2):200-210. 被引量:15
  • 6Wang G Q.Four-bank compactly supported bi-symmetric orthonormal wavelets bases[J].Optical Engineering,2004,43(10):2362-2368.
  • 7邹庆云,王国秋.离散超小波变换下双正交小波谱分析[J].数学进展,2008,37(3):332-336. 被引量:5

二级参考文献9

  • 1[1]Daubechies I. Orthonormal bases of compact supported wavelets. Comm Pure and Appl Math, 1988, 41:909~996
  • 2[2]Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM, 1992
  • 3[3]Steffen P, Heller P, Gopinath R A, et al. Theory of regular M-band wavelet bases. IEEE Trans on Signal Processing, 1993, 41:3497~3511
  • 4[4]Chui C, Lian J A. Construction of compactly supported symmetric and antisymmetric orthonormal wavelets with scale=3. Appl Comput Harmon Anal, 1995, 2:68~84
  • 5[5]Belogay E, Wang Y. Compactly supported orthogonal symmetric scaling functions. Appl Comput Harmon Anal, 1999, 7:137~150
  • 6[6]Jawerth B, Peng Lizhong. Compactly supported orthogonal wavelets on the Heisenberg group. Research Report No. 45. 2001
  • 7[7]Sherman D R, Shen Zuowei. Wavelets and pre-wavelets in low dimensions. J Approximation Theory,1992, 71:18~38
  • 8[8]Heller P N, Resnikoff H L, Wells J R O. Wavelet Matrices and the Representation of Discrete Functions:A Tutorial in Theory and Applications. Cambridge, MA: Academic Press, 1992. 15~50
  • 9王国秋,袁卫卫.一般的9-7小波滤波器及其图像压缩性能研究[J].电子学报,2001,29(1):130-132. 被引量:31

共引文献16

同被引文献25

  • 1孙学岩.熵编码的压缩编码原理与方法[J].潍坊学院学报,2004,4(6):86-87. 被引量:3
  • 2杨有,李晓虹.第2代图像压缩技术回顾与性能分析[J].重庆文理学院学报(自然科学版),2006,5(2):24-27. 被引量:4
  • 3生克伟,郑建宏.图像压缩编码技术及其国际标准[J].重庆邮电学院学报(自然科学版),1997,9(1):27-31. 被引量:3
  • 4Jacquin AE.Image coding based on a fractal theory of iterated contractive image transformations.IEEE Trans Image Process.1992;1:18-30.
  • 5Christopher C.Neural networks for image and video compression.Eur J Oper Res.1998;108:226-282.
  • 6Mallat S.A Theory for multi-resolution signal decomposition:the wavelet representation.IEEE Trans PAMI.1989;11(7):674-693.
  • 7Lee J,Dickinson BW.Temporally adapt motion interpolation exploiting temporal masking in visual perception.IEEE Trans Image Process.1994;3(5):513-526.
  • 8Martin MB,Bell AE.New image compression techniques using multiwavelets and multiwavelet packets.IEEE Trans Image Process.2001;10(4):500-510.
  • 9Antonini M,Barlaud M,Mathieu P,et al.Image coding using wavelet transform.IEEE Trans Image Process.1992;1(2):205-220.
  • 10Edrardo AB.A successive approximation vector quartzes for wavelet transform image coding.IEEE Trans Image Process.1996;5(2):299-309.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部