摘要
本文利用Laplace变换,提出了一种基于雅可比矩阵修正模型的电压稳定频域分析方法。证明了时域模型中的Hopf分叉点和鞍点分叉点对应于频域模型的特征方程轨迹的过零点,提出了一种可同时计及Hopf和鞍点分叉发生可能性的电压稳定性频域测度。最后,利用两个多机系统算例进行了验证。
Abstract With Laplace transformation, a frequency-domain analysis method of voltage stability based on modified Jacobin matrix is presented in this paper. Using this method, it is proved that the Hopf bifurcation point and Saddle-node bifurcation point in the time-domain are the same point at which the trajectory of characteristics equation passes through the original point in the frequency domain. Furthermore, a proximity indictor for voltage stability in frequency-domain is presented. This indictor can not only consider the occurrence of saddle node bifurcation, but also of Hopf bifurcation. At last the conclusion is drawn and verified by two multi-machine systems.
出处
《电力系统及其自动化学报》
CSCD
1998年第2期20-26,共7页
Proceedings of the CSU-EPSA
基金
国家自然科学基金