期刊文献+

权值矩阵聚类算法 被引量:2

A Weight Matrix Clustering Algorithm
下载PDF
导出
摘要 由于以往的算法不能对用户感兴趣的页面进行很好的聚类,所以将网站访问频度作为参数考虑进来,提出一个新的概念——权值关联矩阵,以Web服务器URL为行、以UserID为列建立URL-UserID关联矩阵,与普通的矩阵聚类算法相比,根据用户对某页面的兴趣度,再生成权值关联矩阵。从而发现相似的用户群体和相似的W eb页面。该算法通过上机实践,与传统的矩阵聚类算法相比具有识别准确率高,用户向量特征描述更准确,且能够更准确的反映网站的访问情况等优点。同时为用户提供个性化推荐服务铺平了道路。 Because the algorithms can not cluster the interested pages well, the visit frequency of the site is taken as a parameter into account to introduce a new concept - the right of correlation matrix, namely a URL - UserID correlation matrix. Compared to the matrix clustering algorithm, the right correlation matrix is generated according to the pape on users interest. Thus a similar user groups and similar Web pages are found. The algorithm matrix has higher identification accuracy, more accurate description of vector features, and can more accurately reflect the site visits compared with traditional clustering algorithms.
出处 《计算机仿真》 CSCD 北大核心 2009年第5期115-117,149,共4页 Computer Simulation
关键词 聚类算法 兴趣度 关联矩阵 个性化推荐 Clustering algorithms Interest Correlation matrix Personalized recommendation
  • 相关文献

参考文献9

  • 1J Srivastava, et al. Web usage mining : Discovery and applications of usage patterns from web data[ J]. SIGKDD Explorations, 2000, 1 (2) :12 -23.
  • 2R Cooley, B Mobasher, J Srivastava. Data preparation for mining world wide web browsing patterns[ J ]. Knowledge and Information Systems, 1999,1 ( 1 ) :5 - 32.
  • 3B Mobasher, R Cooley. Creating adaptive Web sites through Usage2based clustering of URLs[ C]. Proc of the 1999 IEEE Knowledge and Data Engineering Exchange Workshop. New York : IEEE Press, 1999:32 - 37.
  • 4G Paliouras, et al. Clustering the users of large web sites into communities[ C]. Proc of the 17th lnt Conf on Machine Learning. San Mateo : Morgan Kaufmann, 2000. 719 - 728.
  • 5Y Fu, K Sandhu, M Shih. A generalization 2 based approach to clustering of Web usage session[ C]. Web Usage Analysis and User Profiling. New York :Springer2Verlag, 2000.21 - 38.
  • 6C Shahabi, A M Zarski, J Shah. Knowledge discovery from users web2page navigation[ C]. Proc of 7th Int Conf on Research Issues in Data Engineering. Birmingham: IEEE Computer Society Press, 1997.20 - 29.
  • 7苏中,马少平,杨强,张宏江.基于Web-Log Mining的Web文档聚类[J].软件学报,2002,13(1):99-104. 被引量:29
  • 8M Perkowitz, O Etzioni. Adaptive websites :Automatically synthesizing Web pages[ C]. Proc of AAAI 98. Madison: AAAI Press, 1998.35 - 40.
  • 9宋擒豹,沈钧毅.Web日志的高效多能挖掘算法[J].计算机研究与发展,2001,38(3):328-333. 被引量:115

二级参考文献9

  • 1Zaiane O R,Proc Advances Digital Libraries Conf,1998年,19页
  • 2Chen M S,Proc of the 16th Int Conf Distributed Computing Systems,1996年,385页
  • 3Mobasher B,Tech Rep:TR96,1996年
  • 4Ng, R., Han, J. Efficient and effective clustering methods for data mining. In: Bocca, J.B., Jarke, M., Zaniolo, C., eds. Proceedings of the 1994 International Conference on Very Large Data Bases (VLDB'94). Santiago, Chile: Morgan Kaufmann, 1994. 144~155.
  • 5Ester, M., Kriegal, H.P, Sander, J. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Simoudis, Evangelos, Han, Jia-wei, Fayyad, U.M., eds. KDD'96--Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. AAAI Press, 1996.
  • 6Kaufman, L., Rousseeuw, P. J. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, 1990.
  • 7Sibson, R. SLINK: an optimally efficient algorithm for the single-link cluster method. The Computer Journal, 1973,16(1):20~34.
  • 8Bouguettaya, A. On-Line clustering. IEEE Transactions on Knowledge and Data Engineering. 1996,8(2):333~339.
  • 9Voorhees, E.M. Implementing agglomerative hierarchical clustering algorithms for use in document retrieval. Information Processing and Management, 1986,22:465~476.

共引文献137

同被引文献14

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部