摘要
为了高效地解决图像特征点配准特别是人脸特征点配准问题,基于活动表观模型(AAM)的拟合算法得到了广泛研究和应用。然而,当参数初始状态和真实情况相差较大时,AAM拟合算法经常无法得到满意的结果。针对AAM拟合算法对参数初值敏感的问题,在AAM反向组合算法基础上,提出了一种简单有效地进行参数初始值估计的方法,通过提取相关区域的矩特征和线性映射计算出比较精确的参数初始值。实验证明方法通过可靠的初始参数值减少了迭代次数,并提高了拟合准确度。
AAM- based approaches have achieved great success to solve image alignment problem and have a wide variety of applications. However, AAM is sensitive to the initial parameter and often converge at local optimal value if the initial state is far away from the ground truth. This paper proposes a simple and effective approach for initial parameters estimate using invariant moments vector and linear mapping. The proposed approach is applied to the face alignment problem. Experiments show that this approach could significantly improve the accuracy and efficiency of face alignment.
出处
《计算机仿真》
CSCD
北大核心
2009年第5期236-239,247,共5页
Computer Simulation
基金
国家自然科学基金项目(60473043)
北京市科技新星计划项目(2005B54)
关键词
活动表观模型
拟合算法
参数初始值估计
图像配准
人脸特征点配准
Active appearance model ( AAM )
Fitting algorithm
Initial parameter estimate
Image alignment
Face alignment